Your SlideShare is downloading. ×
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply



Published on

Qualifying exam

Qualifying exam

  • Be the first to comment

  • Be the first to like this

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

No notes for slide


  • 1. Fundamental Limitsof Cognitive Radios<br />Goochul Chung<br />
  • 2. Outline<br />Motivation<br />Introduction<br />Part I ( Overlay Cognitive Radio )<br /><ul><li>Capacity Analysis of Overlay Cognitive Radio </li></ul>Part II ( Interweave Cognitive Radio )<br /><ul><li>Resource Allocation</li></ul>Part III ( Sensing in Interweave Cognitive Radio )<br /><ul><li>Sensing Strategy in Cooperative Sensing</li></li></ul><li>Frequency Allocation<br />Legitimate Radio<br /><ul><li>Licensed Radio with Primary Use of the Channel
  • 3. Stringent Regulation on Interference to Legitimate Radio</li></ul>Interference<br /><ul><li>Interference to Legitimate Radio
  • 4. Active Legitimate Radio
  • 5. Transmission over Legitimate Channel (Without Cooperation)</li></ul>Legitimate Radio<br />Secondary Network<br />
  • 6.
  • 7. Motivation for Cognitive Radio<br />Scarcity of Channel<br /><ul><li>Almost all wireless channels have licensed user with utmost privilege
  • 8. Constraint for new wireless applications</li></ul>Cognitive Radio<br /><ul><li>Possess Cognitive Information about Legitimate User
  • 9. Interference Avoidance
  • 10. Compensation</li></ul> Use legitimate channel without performance degradation of legitimate user<br /><ul><li>New Wireless Application with Cognitive Radio can Share the Channel with Legitimate User</li></li></ul><li>Cognitive Radio Type<br />Underlay Cognitive Radio<br /><ul><li>Cognitive Information
  • 11. Interference Level ( Channel Gain )
  • 12. Simultaneous Transmission with Limited Interference</li></ul>Interweave Cognitive Radio<br /><ul><li>Cognitive Information
  • 13. Channel Availability
  • 14. No Simultaneous Transmission </li></ul>Overlay Cognitive Radio<br /><ul><li>Cognitive Information
  • 15. Messages of Legitimate User
  • 16. Simultaneous Transmission </li></li></ul><li>Underlay Cognitive Radio<br />Underlay Cognitive Radio<br /><ul><li>Ultra Wide Band
  • 17. Spread its message over ultra wide band ( 3 – 10 GHz )
  • 18. Small Power
  • 19. Use small power to limit interference</li></ul>1<br />N<br />3 GHz<br />10 GHz<br />Legitimate Radio N<br />Legitimate Radio 1<br />Cognitive<br />Radio<br />
  • 20. Interweave Cognitive Radio<br />Interweave Cognitive Radio<br /><ul><li>No Simultaneous Transmission
  • 21. Sense if there is legitimate radio
  • 22. Transmit only if legitimate radio is not detected</li></ul>Legitimate Receiver<br />Legitimate Transmitter<br />Detection<br />No Transmission<br />Cognitive Transmitter<br />Cognitive Receiver<br />
  • 23. Overlay Cognitive Radio<br /><ul><li>Knowledge of Legitimate Users Message
  • 24. Obtain legitimate user’s message sets
  • 25. Unidirectional Cooperation</li></ul>Overlay Cognitive Radio<br />Legitimate Transmitter<br />Backbone Network<br />Legitimate Receiver<br />Unidirectional Cooperation<br />Cognitive Receiver<br />Cognitive Transmitter<br />
  • 26. Question<br />Cognitive Information Acquisition <br /><ul><li> Selective Information Acquisition
  • 27. Can information be efficiently collected to increase spectral efficiency? ( Channel Selection )
  • 28. Sensing
  • 29. How can sensing increase spectral efficiency with sensing accuracy?</li></ul>Utilization of Cognitive Information<br /><ul><li> Resource Allocation
  • 30. How can the resource (power) be allocated to increase average capacity?
  • 31. Coding
  • 32. What is the good coding strategy?</li></li></ul><li>Contribution <br />Capacity Analysis of Cognitive Radio<br /><ul><li>Information Theoretic Understanding on different types of Cognitive Radio
  • 33. Limits of Cognitive Radio
  • 34. Overlay Cognitive Radio
  • 35. Interweave Cognitive Radio
  • 36. Underlay Cognitive Radio</li></ul>System Design of Cognitive Radio<br /><ul><li>Build a Spectrally Efficient Cognitive Radio System
  • 37. Coding Strategy for Overlay Cognitive Radio
  • 38. Resource Allocation Algorithm for Interweave Cognitive Radio
  • 39. Sensing Strategy for Interweave Cognitive Radio </li></li></ul><li>Part ICapacity of Overlay Cognitive Radio<br />
  • 40. Previous Works<br />Fully Cognitive Radio<br /><ul><li> Cognitive of the entire message set of legitimate user
  • 41. Capacity of strong interference case (I. Maricet. al.)
  • 42. Capacity of general interference case (W. Wu et. al.) </li></ul>Partially Cognitive Radio<br /><ul><li>Cognitive of portion of the message set of legitimate user
  • 43. Capacity of strong interference case (I. Maricet. al.)</li></li></ul><li>Partially Cognitive Radio<br />Partially Cognitive Radio<br /><ul><li>Not fully cognitive of licensed user’s message sets
  • 44. : message set known to cognitive radio
  • 45. : message set unknown to cognitive radio</li></ul>Legitimate Transmitter<br />Cognitive Transmitter<br />Partially Cognitive Radio<br />Interference Channel<br />Fully Cognitive Radio<br />
  • 46. Motivation<br />Limited Cognitive Information<br /><ul><li>Practicality
  • 47. Knowledge of full non-causal message set is not guaranteed
  • 48. Generalization
  • 49. Partially Cognitive Radio generalize the channel model in between</li></ul> - Interference Channel<br /> - Fully Cognitive Radio Channel <br />Capacity Analysis <br /><ul><li>Information Theoretical Understanding
  • 50. Knowledge of limits of the channel
  • 51. Coding Design
  • 52. Knowledge of effective coding strategy</li></li></ul><li>System Model<br />Encoder1<br />Decoder1<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Transmitter<br />Cognitive Receiver<br />Weak Interference<br /><ul><li>Weak Interference to Legitimate Receiver</li></ul>Rate Region<br /><ul><li> : Rate Triplet for </li></ul>Partially Cognitive Radio Constraint<br /><ul><li> : determines ratio of two rates
  • 53. : Fully Cognitive Radio Channel
  • 54. : Interference Channel ( Capacity : Still Open Problem )</li></li></ul><li>Key Feature<br />Common Message at the Cognitive Transmitter<br /><ul><li> : Detected only at Legitimate Receiver
  • 55. Unidirectional cooperation from the cognitive transmitter
  • 56. Side Information for Cognitive Radio </li></ul>Encoder1<br />Decoder1<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Transmitter<br />Cognitive Receiver<br />
  • 57. Outer Bound (Discrete Memoryless Channel)<br />Outer bound of capacity region<br /><ul><li>Outer bound: Convex closure of the following inequality </li></ul>for the probability distribution <br />
  • 58. Outer Bound (Discrete Memoryless Channel)<br />Encoder1<br />Decoder1<br />Discrete Memoryless Channel<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Receiver<br />Cognitive Transmitter<br />: Auxiliary Random Variable from<br />:Transmitter side information on<br /> : Decoded from at decoder1 <br />
  • 59. Outer Bound (Discrete Memoryless Channel)<br />Discrete Memoryless Channel<br />Encoder1<br />Decoder1<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Transmitter<br />Cognitive Receiver<br /> : Auxiliary Random Variable from <br /> Independent with <br /> : Decoded from at decoder1 <br />
  • 60. Discrete Memoryless Channel<br />Encoder1<br />Decoder1<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Transmitter<br />Cognitive Receiver<br />Outer Bound (Discrete Memoryless Channel)<br />: Encoded into<br />: Decoded from at decoder 2 <br />: Independent with <br />
  • 61. Discrete Memoryless Channel<br />Encoder1<br />Decoder1<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Transmitter<br />Cognitive Receiver<br />Outer Bound (Discrete Memoryless Channel)<br />: Encoded into<br />: Decoded from at decoder 2 <br />: Independent with<br />: Given to encoder 2 as side information<br />
  • 62. Outer Bound (Gaussian Channel)<br />Gaussian Channel<br /><ul><li>Condition : weak interference to licensed receiver</li></ul>Encoder1<br />Decoder1<br />Legitimate Transmitter<br />Legitimate Receiver<br />Encoder2<br />Decoder2<br />Cognitive Transmitter<br />Cognitive Receiver<br />
  • 63. Outer Bound (Gaussian Channel)<br />Outer bound of capacity region<br /> : convex closure of set : Transmit powers <br />
  • 64. Outer Bound (Gaussian Channel)<br />Encoding With Power Split<br /><ul><li>Constraint on : Transmit cooperation with power split
  • 65. Same codeword for
  • 66. Constraint on : Interference free for transmission
  • 67. Interference cancellation at the transmitter </li></ul>Decoder1<br />Decoder2<br />Encoding With Power Split & Interference Cancellation<br />
  • 68. Achievable Scheme (General Idea)<br />Support Legitimate Transmission<br /><ul><li>Superposition coding with allocation of power to shared message</li></ul>Interference Cancellation<br /><ul><li>Dirty paper coding to cancel interference </li></ul>Support Interference Channel Transmission<br /><ul><li>Han & Kobayashi coding to cope with interference like channel</li></li></ul><li>Coding <br />Legitimate Transmitter<br />Legitimate Receiver<br />Codebook1<br />Joint <br />Decoder<br />Codebook2<br />Rate <br />Split<br />Codebook3<br />Codebook1<br />Joint <br />Decoder<br />DPC<br />Rate <br />Split<br />Codebook4<br />SIC<br />Cognitive Transmitter<br />Cognitive Receiver<br />
  • 69. Numerical Result<br />Performance of achievable scheme is compared to the outer bound <br />Interference gain<br /><ul><li>b = 0.5
  • 70. a = 2</li></ul>Power constraints<br /><ul><li>Power constraint for legitimate transmitter: 10
  • 71. Power constraint for cognitive transmitter: 10</li></li></ul><li>Numerical Result<br /> : Approaches Capacity Region of Fully Cognitive Radio<br /> : Good Inner and Outer Bound for Interference Channel<br />
  • 72. Contribution<br />Capacity of Partially Cognitive Radio<br /><ul><li>‘Good’ Outer Bound
  • 73. Tight in one extreme: Fully Cognitive Radio
  • 74. Gradual decrease with loss of cognitive information
  • 75. ‘Good’ Achievable Scheme
  • 76. Capacity Achieving in one extreme: Fully Cognitive Radio
  • 77. Best Known Capacity Achieving Coding : Interference Channel
  • 78. Gradual decrease with loss of cognitive information</li></li></ul><li>Future Work<br />Sum Capacity with Constant Gap<br /><ul><li>Interference Channel : 1 Bit Gap ( R. Etkin et. al. )
  • 79. Capacity with 1 Bit gap in Gaussian interference channel
  • 80. Fully Cognitive Channel : Capacity Achieving
  • 81. Capacity achieving in Gaussian interference channel with Fully Cognitive Radio</li></ul>Partially Cognitive Radio<br /><ul><li>Generalize the Sum Capacity Result
  • 82. Establish sum capacity with constant gap in two extremes
  • 83. Establish sum capacity with a gap corresponding to </li></li></ul><li>References<br />J.Mitola, “Cognitive Radio,” Ph.D. dissertation, Royal Institute of Technology (KTH),Stockholm, Sweden, 2000.<br />S. Haykin, Cognitive radio: brain-empowered wireless communications, IEEE J. Sel. Areas in Commun., vol. 23, pp. 201-220, Feb. 2005.<br />N. Devroye, P. Mitran and V. Tarokh, “Achievable Rates in Cognitive Rado Channels,” IEEE Trans. Inform. Theory, vol. 52, pp. 1813-1827, May 2006.<br />I. Maric, A. Goldsmith, G. Kramer, S. Shamai (Shitz), “On the Capacity of Interference Channel with a Partially-Cognitive Traansmitter,”IEEE Trans. Inform. Theory.<br />I. Maric, R. Yates, “The Strong Interference Channel with Common Information,” Allerton Conf. Communications, Monticello, Il, Sep. 2005.<br />I. Maric, R. Yates, G. Kramer, “The strong interference channel with unidirectional cooperation,” presented at the Information Theory and Applications (ITA) Inaugural Workshop, Feb. 2006.<br />W. Wu, S. Vishwanath and A. Arapostathis, “On the Capacity of Interference Channel with degraded Message Sets,”IEEE Trans. Inform. Theory.<br />T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,”IEEE Trans. Inform. Theory, vol. 27, pp. 49-60, Jan. 1981.<br />H. Sato, “Two-user communication channels,” IEEE Trans. Inform. Theory, vol. 23, pp. 295-304, May 1977.<br />A. B. Carleial, “Outer bounds on the capacity of interference channels,” IEEE Trans. Inform. Theory, vol. 29, pp. 602-606, Jul. 1983. vol. IT-24,<br />J. A. Thomas, “Feedback can at most double Gaussian multiple access channel capacity,” IEEE Trans. Inform. Theory, vol. 33, pp. 711-716, Sep. 1987.<br />H. Weingarten, Y. Steinberg and S. Shamai (Shitz), “The Capacity region of the Gaussian MIMO broadcast channel,” IEEE Trans. Inform. Theory, vol. 52, pp. 3936-3964, Sep. 2006.<br />M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory, vol. 29, pp. 439-441, May 1983.<br />T. M Cover and J.A. Thomas, Elements of information theory, ser. Wiley Series in Telecommunications. New York: John Wiley & Sons Inc., 1991, a Wiley-Interscience Publication.<br />
  • 84. Part IICapacity of Interweave Cognitive Radio<br />
  • 85. Motivation<br />Low Utilization <br /><ul><li>FCC Report
  • 86. Several unused 6MHz channel everywhere
  • 87. Possibility of opening the channel near future</li></ul>Interweave Cognitive Radio <br /><ul><li>Opportunistic Access
  • 88. Increase spectral efficiency
  • 89. Channel Selection & Power allocation
  • 90. Establish maximum increase in spectral efficiency</li></li></ul><li>Multiple Channel<br />sense<br />sense<br />sense<br />Multiple Channel in Interweave Cognitive Radio<br /><ul><li>Total legitimate channels : N
  • 91. Number of Simultaneous Sensing : L
  • 92. Selection of L channels to sense from N legitimate channels
  • 93. Transmission over available channels</li></ul>Example when N=4 and L=2<br />: Licensed user<br />: Cognitive user<br />
  • 94. Channel Environment<br />Dissimilarity between Channels <br /><ul><li>Noise Variances:
  • 95. Different noise variances
  • 96. Represents fading states
  • 97. Probability of Channel Being Available:
  • 98. Different probabilities
  • 99. Low indicates frequently used channel</li></ul>Graphical Representation of Channel, N=4<br />
  • 100. Question<br />Selection of Channel Sensing <br /><ul><li>Low Noise Variance
  • 101. High Probability of Being Available</li></ul> What is a good channel in the mixture?<br />Power Allocation <br /><ul><li>Dependent on Channel Sensing
  • 102. No power allocation on unavailable channel </li></ul> How do we allocate power?<br />Joint Optimization <br /><ul><li>Power Allocation and Channel Selection
  • 103. Maximize Average Capacity</li></ul> Limit of interweave cognitive radio & Building of efficient system<br /><ul><li>Probability of Channel Being Available:
  • 104. Different probabilities
  • 105. Low indicates frequently used channel</li></li></ul><li>Joint Optimization Problem<br />Optimization Parameter <br /><ul><li>Channel Selection:
  • 106. Power Allocation :</li></ul>Average Capacity Maximization <br />
  • 107. <ul><li>Power Allocation with given
  • 108. Find power allocation when channel selection is given
  • 109. Graphically represented by “modified water-filling”</li></ul>Optimal Power Allocation<br />Example when N=4, L=3<br />
  • 110. <ul><li>Exhaustive Search
  • 111. Exhaustive search of channels with the highest capacity
  • 112. Combinatorial times “modified water-filling”
  • 113. Require more efficient method to select channels</li></ul>Optimal Channel Selection<br />
  • 114. <ul><li>Objective
  • 115. Approximate the optimal channel selection and power allocation
  • 116. Reduce complexity
  • 117. Two Step Approximation
  • 118. Coarse Optimization
  • 119. Lowest water-level
  • 120. Fine Optimization
  • 121. Neglect poor channels
  • 122. Use lowest water-level</li></ul>Sub-Optimal Channel Selection<br />Coarse Optimization<br />Optimal?<br />Yes<br />Lowest water-level<br />Coarse Optimization<br />
  • 123. <ul><li>Coarse Optimization
  • 124. Find channels that minimize water-level of modified water-filling
  • 125. Iteratively find channels which lower the water-level
  • 126. maximum N-L iteration
  • 127. Optimal if water-level is lower than any unselected channel</li></ul>Coarse Optimization<br />Arbitrary L channels & modified water-filling<br />Compare area under water-level<br />L largest channels & modified water-filling<br />Terminate if no larger area<br />Example when N=5, L=2<br />
  • 128. <ul><li>Intuition
  • 129. Existence of unselected channel with low noise variance
  • 130. Channel selection can be improved
  • 131. Existence of channel with very high noise variance
  • 132. Useless ( Does not increase capacity )
  • 133. Method
  • 134. Exclude useless channels
  • 135. Relax integer condition on channel selection
  • 136. Find convex function</li></ul>Fine Optimization<br />Coarse Optimization<br />Useless Channel<br />Fine Optimization Needed<br />
  • 137. Fine Optimization<br />Optimization Problem <br /><ul><li>Find channel selection & power allocation to maximize capacity
  • 138. : Minimum water level from coarse optimization
  • 139. k : Constant which makes the objective function convex</li></li></ul><li>2010년 4월 18일<br />Fine Optimization<br />Solution<br /><ul><li>Solution from KKT condition</li></ul>Optimality <br /><ul><li>Performs the same with the exhaustive search</li></ul>Complexity <br /><ul><li>Order N iteration</li></li></ul><li>Numerical Result<br />Performance Comparison<br /><ul><li>Exhaustive Search
  • 140. Coarse Optimization
  • 141. Fine Optimization</li></ul>Parameter <br /><ul><li>N=8
  • 142. L=4</li></li></ul><li><ul><li>Coarse Optimization
  • 143. Optimal in low SNR
  • 144. Fine Optimization
  • 145. Same performance with exhaustive search in all SNR region</li></ul>Numerical Result<br />
  • 146. Contribution<br />Average Capacity of Interweave Cognitive Radio<br /><ul><li>Joint Optimization to maximize average capacity
  • 147. Channel Selection
  • 148. Power Allocation
  • 149. Limits of Interweave Cognitive Radio is verified</li></ul>Practical Maximum Capacity Achieving System <br /><ul><li>Computationally practical algorithm
  • 150. Coarse Optimization
  • 151. Fine Optimization</li></ul> Practical interweave cognitive radio system is built<br /> Contribution to Spectral Efficiency<br />
  • 152. Future Work<br />Interweave Cognitive Radio with Learning<br /><ul><li>Exact Knowledge on Channel Availability Probability
  • 153. In practice, Cognitive may not know the exact probability
  • 154. Understanding of the probability can be enhanced by observation</li></ul>Exploitation & Exploration <br /><ul><li>Exploitation
  • 155. With the sensing result, cognitive radio makes a transmission
  • 156. Exploration
  • 157. With the sensing result, cognitive radio updates the probability of channel being available</li></li></ul><li>Joint Power Allocation & Channel Selection with Learning<br />sense<br />sense<br />sense<br />Interweave Cognitive Radio with Learning ( L. Lei et. al. )<br /><ul><li>Channel Selection with fixed power allocation
  • 158. Multi arm bandit solution</li></ul>: Licensed user<br />: Cognitive user<br />Frequency Time Power Allocation & Channel selection <br />
  • 159. References<br />S. Srivasa and S. Jafar, “The Throughput Potential of Cognitive Radio: A Theoretical Perspective,” Asilomar Conf. on Signals, Systems, and Computers, Asilomar, CA, Oct. 2006.<br />N. Devroye, P. Mitran, and V. Tarokh, “Achievable Rates in Cognitive Rado Channels,” IEEE Trans. Inform. Theory, vol. 52, pp. 1813-1827, May 2006.<br />W. Wu, S. Vishwanath, and A. Arapostathis, “Capacity of a Class of Cognitive Radio Channels: Interference Channels With Degraded Message Sets,” IEEE Trans. Inform. Theory, vol. 53, pp. 4391-4399, Nov. 2007.<br />W. Wang, T. Peng and W. Wang, “Optimal Power Control under Interference Temperature Constraints in Cognitive Radio Network,” IEEE Wireless Comm. & Networking Conf., Hong Kong, Mar. 2007.<br />A. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inform. Theory, vol. 43, pp. 1986-1992, Nov. 1997.<br />Y. Song, Y. Fang, and Y. Zhang, “Stochastic Channel Selection in Cognitive Radio Networks,” IEEE Global Communications Conf., Washington, DC, Nov. 2007.<br />X. Yang, Z. Yang, and D. Liao, “Adaptive Spectrum Selection for Cognitive Radio Networks,” International Conf. on Computer Science and Software Engineering, Wuhan, China, Dec. 2008.<br />D. Huang, C. Miao, C. Leung and Z. Shen, “Resource Allocation of MU-OFDM Based Cognitive Radio Systems Under Partial Channel State Information,”<br />G. Chung, S. Vishwanath, and C. S. Hwang, “On the Fundamental Limits of Interweaved Cognitive Radios,”<br />
  • 160. Part IIISensing of Interweave Cognitive Radio<br />
  • 161. Motivation<br />Sensing Accuracy<br /><ul><li>Accurate Cognitive Information
  • 162. Guarantee Legitimate User’s Reliable Transmission</li></ul>Cooperative Sensing <br /><ul><li>Firm Requirement on Interference to Legitimate User
  • 163. Cooperative sensing increases sensing ability</li></ul>Spectral Efficiency <br /><ul><li>Trade offs between spectral efficiency and detection error
  • 164. Design sensing system to maximize spectral efficiency
  • 165. Keep detection error in tolerable level</li></li></ul><li>Cooperative Sensing<br />Legitimate Radio<br />Sensing Network <br /><ul><li>Energy Detection
  • 166. Each sensor detects energy level
  • 167. Underlay Network
  • 168. Unaware of existence of legitimate user
  • 169. No dedicated channel exists
  • 170. Limited bit and distance</li></ul>Sensing Network<br />
  • 171. Cooperative Sensing<br />Energy Detector<br />Decision<br />Parameter and Variables <br /><ul><li>Detection Time at each Detector
  • 172. Mapping to </li></ul>Legitimate<br />Transmitter<br />Energy Detector<br />& Mapping<br />Energy Detector<br />& Mapping<br />
  • 173. Previous Work<br />Distributed Computation ( Tsisikliset. al.) <br /><ul><li>General Model on Distributed Computation
  • 174. Solution to Sensing Error</li></ul>Sensing Algorithm <br /><ul><li>Probability of Detection
  • 175. Probability of False Alarm</li></li></ul><li>Future Work<br />Build Cooperative Sensing System <br /><ul><li>Spectrally Efficient System
  • 176. Limit on Detection Error</li></ul>Expected Contribution<br /><ul><li>Combined work of Sensing Network and Spectrally Efficient System
  • 177. Spectrally Efficient System with Constraint on Cognitive Radio</li></li></ul><li>Summary <br />Capacity Analysis of Cognitive Radio<br /><ul><li>Capacity of Overlay Cognitive Radio
  • 178. ‘Good’ Outer Bound
  • 179. ‘Good’ Inner Bound
  • 180. Capacity with a Reasonable Gap
  • 181. Maximum Average Capacity of Interweave Cognitive Radio</li></ul>System Design of Cognitive Radio<br /><ul><li>Build a Spectrally Efficient Cognitive Radio System
  • 182. Coding Strategy for Overlay Cognitive Radio
  • 183. Resource Allocation Algorithm for Interweave Cognitive Radio</li></ul> - Exact Knowledge of probability<br /> - With Learning<br /><ul><li>Sensing Strategy for Interweave Cognitive Radio </li></li></ul><li>Appendix (1)<br />Proof of outer bound (IFC-DMS)<br />(a)from conditional markov chain <br />(b)from identifying <br />
  • 184. Appendix (2)<br />(a)from identifying <br />
  • 185. Appendix (3)<br />(a)from markov chain <br />(c)from identifying <br />(b)from conditional markov chain <br />
  • 186. Appendix (4)<br />(a)from identifying <br />
  • 187. Appendix (5)<br />(a)from markov chain <br />(c)from identifying <br />(b)from conditional markov chain <br />
  • 188. Appendix (6)<br />Proof of outer bound (Gaussian)<br />Lemma: Let be arbitrarily distributed zero-mean random variables with covariance matrix , where are independent of each other. Let be the zero-mean Gaussian distributed random variables with the same covariance matrix. Then,<br /> Lemma: Let be arbitrarily distributed zero-mean random variables , and be the Gaussian distributed random variables with the same covariance matrix. Let be any subset of {1,2,…,k} and be its complement. Then,<br /> With help of EPI and above Lemma, outer bound can be proven<br />