• Like
  • Save
Regresi Suten
Upcoming SlideShare
Loading in...5
×
 

Regresi Suten

on

  • 975 views

 

Statistics

Views

Total Views
975
Views on SlideShare
969
Embed Views
6

Actions

Likes
0
Downloads
5
Comments
1

1 Embed 6

http://analisisfaktorkelompok8.blogspot.com 6

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Regresi Suten Regresi Suten Presentation Transcript

    • REGRESI
      • DISUSUN OLEH
      • NAMA : MUHAMAD SUTEN AJI
      • KELAS III D
      • NIM 082472
    • REGRESI
      • REGRESI adalah salahsatu metode untuk menentukan sebab akibat antara variabel satu dengan variabel lainnya
      • Variabel penyebab bisa disebut variabel X sedangkan variabel akibat berarti Y
      • Kedua variabel ini merupakan variabel acak atau random
    • Regresi terbagi menjadi
      • Regresi linear yaitu digunakan untuk melakukan pengujian hubungan antara variabel X dan Y yang ditampilkan dalam bentuk persamaan regresi.
      • Regresi multiple linear yaitu variabel X > 1 maka persamaan regresinya merupakan persamaan regresi linear berganda
    • Rumus- rumus regresi
      • Regresi linear
      • Y= a+bX
      • Dimana :
      • Y= variabel tergantung(dependent)
      • X= variabel bebas
      • a= nilai konstanta
      • b= koefisien arah regresi
      • Regresi multiple linear
      • Y= a+bX1+cX2….+kXk
    • 39 28 30 40 29 29 39 27 28 40 29 27 38 27 26 38 28 25 37 27 24 44 29 23 44 30 22 37 27 21 36 28 20 36 28 19 42 27 18 42 28 17 40 30 16 42 28 15 39 31 14 40 27 13 36 27 12 40 29 11 36 27 10 36 27 9 36 27 8 38 28 7 36 27 6 36 28 5 39 31 4 36 27 3 38 29 2 36 30 1 Ukurn sepatu (X2) Ukuran celana (X1) Nomor
    • Descriptive Statistics 30 1.26173 28.1667 ukurancelana 30 2.47377 38.5333 ukuransepatu N Std. Deviation Mean
    • Correlations 30 30 ukurancelana   30 30 ukuransepatu N . 0.0194 ukurancelana   0.0194 . ukuransepatu Sig. (1-tailed) 1 0.3793 ukurancelana   0.3793 1 ukuransepatu Pearson Correlation ukurancelana ukuransepatu  
    • Variables Entered/Removed(b) Enter . ukurancelana(a) 1 Method Variables Removed Variables Entered Model
    • Model Summary(b) 1.398 2.3294 0.113 0.144 .379(a) 1 Durbin-Watson Std. Error of the Estimate Adjusted R Square R Square R Model
    • ANOVA(b) 29 177.47 Total 5.426 28 151.93 Residual .039(a) 4.706 25.533 1 25.533 Regression 1 Sig. F Mean Square df Sum of Squares Model
    •  
    • Residuals Statistics(a)                       a Dependent Variable: ukuransepatu 30 0.043 0.033 0.174 0.001 Centered Leverage Value 30 0.054 0.037 0.206 0 Cook's Distance 30 1.258 0.967 5.043 0.017 Mahal. Distance 30 1.049 0.009 2.289 -1.844 Stud. Deleted Residual 30 2.4576 -0.024 5.09332 -4.3595 Deleted Residual 30 1.018 -0.005 2.133 -1.769 Stud. Residual 30 0.983 0 2.081 -1.673 Std. Residual 30 2.2889 0 4.84693 -3.8968 Residual 30 1.0073 38.557 41.0692 37.3752 Adjusted Predicted Value 30 0.162 0.58 1.06 0.429 Standard Error of Predicted Value 30 1 0 2.246 -0.925 Std. Predicted Value 30 0.9383 38.533 40.6404 37.6657 Predicted Value N Std. Deviation Mean Maximum Minimum
    • Charts