2
Upcoming SlideShare
Loading in...5
×
 

2

on

  • 1,595 views

 

Statistics

Views

Total Views
1,595
Slideshare-icon Views on SlideShare
1,595
Embed Views
0

Actions

Likes
0
Downloads
4
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    2 2 Presentation Transcript

    • ตรีโกณมิติ ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่าด้วยการคำนวณ มุมของสามเหลี่ยม
    • ความเป็นมา เมื่อ 640-546 ปี ก่อนคริสต์ศักราช ทาเรส (thales) คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหนึ่งที่ทาเรสใช้คือ คำนวณความสูงของพีรามิดจากความยาวของเงาของพีรามิด ในขณะที่เงาของเขามีความยาวเท่ากับความสูงของเขาเอง อีกวิธีหนึ่งที่ทาเรสใช้คำนวณ ความสูงของพีรามิดคือ การเปรียบเทียบความยาวของเงาของพีรามิดกับความยาวของเงาของไม้ ( ไม้ที่ทราบความยาว ถ้าสมัยนี้ก็คือไม้เมตรนั่นเอง ) โดยอาศัยรูปสามเหลี่ยมคล้าย ซึ่งก็คือ อัตราส่วนตรีโกณมิติที่เรียกว่า แทนเจนต์ (tangent) นั่นเอง
    • อัตราส่วนตรีโกณมิติ   อัตราส่วนตรีโกณมิติ ( Trigonometric Ratio) หมายถึง อัตราส่วนของด้านของรูปสามเหลี่ยมมุมฉาก การเรียนในเรื่องนี้ผู้เรียนจำเป็นต้อง ใช้ความรู้เดิมเรื่องสามเหลี่ยมคล้ายเพื่อเป็นพื้นฐานในการทำความเข้าใจ การเรียนวิชาตรีโกณมิติให้ได้ดีนั้นต้องจำนิยามของตรีโกณมิติให้ได้ ระดับมัธยมต้นใช้นิยามสามเหลี่ยมมุมฉาก ซึ่งอัตราส่วนตรีโกณมิติ ก็คือ อัตราส่วนของความยาวด้านสองด้านของสามเหลี่ยมมุมฉากซึ่งจะมีชื่อเรียกดังนี้
    • จากรูป ABC เป็นรูปสามเหลี่ยมมุมฉาก โดยมี AĈB = 90 องศา ถ้าเราพิจารณาที่มุม A 1. ด้าน AB เรียกว่า ด้านตรงข้ามมุมฉาก 2. ด้าน BC เรียกว่า ด้านตรงข้ามมุม A 3. ด้าน AC เรียกว่า ด้านประชิดมุม A A B C a b c
    • "Sine A" ไซน์ของมุม A หรือเขียนย่อว่า sin A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านตรงข้ามมุมฉาก "Cos A" โคไซน์ของมุม A หรือเขียนย่อว่า cos A หาได้จากอัตราส่วนของความยาวด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุมฉาก "Tangent A" แทนเจนต์ของมุม A หรือเขียนย่อว่า tan A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านประชิดมุม A
    • ส่วนฟังก์ชัน cosec, sec และ cot นั้น ก็ใช้นิยามเข้าช่วย ซึ่งเป็นส่วนกลับของ sin, cos และ tan ตามลำดับ จึงต้องจำฟังก์ชัน sin, cos, tan ก็จะได้ในส่วนของ cosec, sec และ cot ขึ้นมาเองโดยอัตโนมัติ "Cotangent A" โคแทนเจนต์ของมุม A หรือเขียนย่อว่า cot A หาได้จากอัตราส่วนของความยาวด้านด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุม A "Secant A" ซีแคนต์ของมุม A หรือเขียนย่อว่า sec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านประชิดมุม A "Cosecant A" โคซีแคนต์ของมุม A หรือเขียนย่อว่า cosec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านตรงข้ามมุม A
    • ข้อสังเกต 1. 0 < sin A < 1 และ cosec A > 1 2. 0 < cos A < 1 และ sec A > 1 3. sin ( A + B )  sin A + sin B 4. =  5. (sin A)(sin A) = (sin A) 2 = sin 2 A  sin A 2 6. sin A = cos ( 90 – A ) 7. cos A = sin ( 90 – A ) 8. tan A = cot ( 90 – A ) 9. sec A = cosec ( 90 – A )
    • ค่าของฟังก์ชันตรีโกณมิติ อัตราส่วนตรีโกณมิติ
    • เอกลักษณ์ตรีโกณมิติ นิยาม เอกลักษณ์ตรีโกณมิติ คือ การเท่ากันของอัตราส่วนตรีโกณมิติที่ต่างกันและเป็นจริงสำหรับทุกๆค่าขององศา เมื่อกำหนด A เป็นมุมแหลม 1. sin A x cosec A = 1 2. cos A x sec A = 1 3. tan A x cot A = 1 4. cos A x tan A = sin A 5. cot A x sin A = cos A 6. sin 2 A + cos 2 A = 1 7. sec 2 A - tan 2 A = 1 8. cosec 2 A - cot 2 A = 1
    •   ฟังก์ชันของมุมรอบจุด ข้อสังเกต   1. ฟังก์ชัน       90o    +   A        ,         270o    +   A                  จะได้    co-function   2. ฟังก์ชัน     180o    +   A        ,    n  .  360o    +   A    ,   -A       จะได้ฟังก์ชันเดิม
    • - sin A cos A - tan A - cot A sec A - csc A sin A cos A tan A cot A sec A csc A - sin A cos A - tan A - cot A sec A - csc A -cos A sin A - cot A - tan A csc A - sec A - cos A - sin A cot A tan A - csc A - sec A - sin A - cos A tan A cot A - sec A - csc A sin A - cos A - tan A - cot A - sec A csc A cos A - sin A - cot A - tan A - csc A sec A cos A sin A cot A tan A csc A sec A sin cos tan cot sec csc - A 360 o + A 360 o - A 270 o + A 270 o - A 180 o + A 180 o - A 90 o + A 90 o - A
    • หน่วยองศา 1 องศา       60' ( ลิปดา ) 1 ลิปดา      60&quot; ( ฟิลิปดา ) หน่วยเรเดียน มุม
    • เครื่องหมายของฟังก์ชันตรีโกณมิติตามควอแดรนต์