1.2 introducción a la noción generalizada del concepto de función  UNIDAD 1 "FUNCIONES POLINOMIALES"
Introducción. <ul><li>una función es un conjunto de parejas ordenadas, en donde no hay dos parejas con el mismo primer ele...
Función Polinomial: <ul><li>Las funciones  se clasifican, de acuerdo con las reglas de correspondencia, como funciones Alg...
<ul><li>  Para realizar la grafica de una función, primero se debe determinar cual es su Dominio.  </li></ul><ul><li>Aquí,...
<ul><li>  </li></ul><ul><li>En esta primera unidad veremos lo que son : </li></ul><ul><li>  </li></ul><ul><li>Métodos de e...
<ul><li>Existen muchas situaciones en la práctica en las que se establece la relación  entre los elementos de dos conjunto...
Definición de función <ul><li>“ una función es un conjunto de parejas ordenadas, en donde  no hay dos parejas con el mismo...
<ul><li>Ejemplo: </li></ul><ul><li>Dominio= {Cecilia, miguel, Joel, Francisco, Verónica, Alejandro, Jazmín, Norma, Juan, F...
1.2.1 notación de funciones  <ul><li>Para denotar una función se emplea la siguiente notación: </li></ul><ul><li>f: A  B ...
1.3Concepto de función polinomial <ul><li>Las funciones se clasifican, de acuerdo con la regla de correspondencia, como: f...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; ECUACIONES BICUADRATICAS
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; ECUACIONES BICUADRATICAS La ecuacion x 4 -8x 2 +15=0 es una ecuacion de grado ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; b 2- 8b+15=0 ( b-3)  (b-5) b-3=0  b-5=0 b=3  b=5 Y como b=x 2  se tienen que o...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Y la grafica de la funcion x 4 -8x 2 +15=0 queda de este modo:
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Determina las raices de las siguientes ecuaciones a partir de los crit...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; DIVISION SINTETICA
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>La division sintetica  de la funcion 2x 3 -x 2 -5x+7 entre x-3 se real...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1 er  renglon 2 do  renglon 3 er renglon La division queda asi: Dividendo divi...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>EJERCICIO: </li></ul><ul><li>Realizar las divisiones siguientes aplica...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; ECUACIONES CUBICAS QUE SE RESUELVEN POR FACTORIZACION DIRECTA
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Vamos a resolver la funcion f(x)=x 3 +3x 2 -4x-12=0 </li></ul><ul><li>...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 4.  Como nos dio de resultado cero eso quiere decir que es correcto y ahora lo...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Con eso ya obtuvimos las tres raices que son: (x+2) (x-2) (x+3) Y las cordenad...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>EJERCICIO: </li></ul><ul><li>Realizar las operaciones necesarias para ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; METODOS DE BISECCION
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Resolvamos la funcion f(x)=2x 3 -7x 2 +x+10 y se propone que para esto se asig...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; f(-1)= 2(-1) 3 -7(-1) 2 +(-1)+10 f(-1)=-2-7-1+10 f(-1)=0 ---------------------...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; f(2)= 2(2) 3 -7(2) 2 +(2)+10 f(2)=16-28+2+10 f(2)=0 --------------------------...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Se evalua la funcion f(x)=2x 2 -7x 2 +x+10 para  Obteniendo: Se observa que la...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Efectivamente el tercer punto donde la cuerva corta el eje de las abscisas tie...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>EJERCICIO: </li></ul><ul><li>Construya la grafica con las funciones si...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; BOSQUEJO  DE UNA  GRAFICA  DE UNA  FUNCION POLINOMIAL
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; A partir de una grafica de una funcion polinomial se puede realizar un analisi...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1.5.1 Intersecciones de la gráfica con los ejes cartesianos. <ul><li>En una gr...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Si tenemos la función cuadrática: </li></ul><ul><li>X2+15x+56=0  </li>...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; F(0)=x(0)+15(0)+56 F(0)=56
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>En este caso, de acuerdo a la formula general obtuvimos las intersecci...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>En forma resumida, podemos decir, que las intersecciones de la grafica...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Resuelve los siguientes ejercicios y señala sus intersecciones con los...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1.5.2 Análisis de comportamiento de las funciones polinomiales. <ul><li>Las fu...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Y cada una de estas funciones, igualmente de acuerdo al numero de incó...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; -x2+5x-4=0 Cabe señalar que en este tipo de graficas es importante  encontrar ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Desarrollándola de acuerdo a las valores que nos dan en la ecuación: <ul><li>E...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Y sustituyendo los valores de la ecuación obtendremos esto: -x2+5x-4 a=-1 b=5 ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Estos valores obtenidos serán los que intersecten en el eje de las X, mientras...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>De acuerdo a la ecuación realizada anteriormente, veamos sus intersecc...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Resuelve las siguientes funciones polinomiales: </li></ul><ul><li>a) X...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1.5.3 Traslación horizontal y vertical. <ul><li>Traslación horizontal: esta se...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; X1=-3 y1=0 X2=1  y2=0 Sabiendo que los valores otorgados a y fue en función de...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>La forma en que la grafica se presenta es así: </li></ul><ul><li>Obser...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Traslación vertical: esta se producirá si se agrega la constante  h  d...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Para obtener las coordenadas de (x, y)  y graficarlas, puedes utilizar...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>La forma en que la grafica se presenta es así: </li></ul><ul><li>Obser...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>En análisis, se denomina intervalo a todo  subconjunto conexo  de la  ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Es un conjunto de números que se corresponden con los puntos de una recta o se...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Se pueden clasificar los intervalos según sus características  topológ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>4x3-9x2-21x+26 </li></ul><ul><li>26{ +-1,2,26 </li></ul><ul><li>(x+2) ...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>a=4 </li></ul><ul><li>b=-17 </li></ul><ul><li>c=13 </li></ul><ul><li>X...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; (x+2) (x+3.25) (x+1) X= -2  x=-3.25  x=-1 0  0  0 Y para graficar, solo trazam...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Una vez obtenidos estos valores graficamos: </li></ul>
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Observando que su: </li></ul><ul><li>Max  Crec. (-00,-1) </li></ul><ul...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Una de las características propias de las funciones polinomiales es qu...
UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Para graficar solo nos fijamos en los valores que nos dieron al tabula...
Upcoming SlideShare
Loading in...5
×

funciones polinomiales

238,039

Published on

Published in: Business
4 Comments
8 Likes
Statistics
Notes
No Downloads
Views
Total Views
238,039
On Slideshare
0
From Embeds
0
Number of Embeds
21
Actions
Shares
0
Downloads
1,002
Comments
4
Likes
8
Embeds 0
No embeds

No notes for slide

funciones polinomiales

  1. 1. 1.2 introducción a la noción generalizada del concepto de función UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  2. 2. Introducción. <ul><li>una función es un conjunto de parejas ordenadas, en donde no hay dos parejas con el mismo primer elemento . </li></ul><ul><li>El conjunto de los primeros elementos de las parejas se les llama Dominio y al conjunto de los segundos elementos de las parejas se le llama Ámbito o Contra dominio. </li></ul><ul><li>Para establecer la asociación entre los elementos del Dominio con los elementos del Contra dominio se emplea una Regla de Correspondencia. </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  3. 3. Función Polinomial: <ul><li>Las funciones se clasifican, de acuerdo con las reglas de correspondencia, como funciones Algebraicas (polinomicas, racionales y con radicales).Exponenciales, Logarítmicas y trigonométricas. En esta unidad solo se trataran las funciones polinomiales. </li></ul><ul><li>Existen tres formas para mostrar el comportamiento de una función: Una tabla que muestra al conjunto de parejas, La formula o expresión algebraica de la regla de correspondencia y la grafica de la función. </li></ul><ul><li>La grafica de una función es de gran ayuda para observar como se comporta dentro de su dominio o en algún intervalo de valores de este. Se empleara el sistema de coordenadas rectangulares para elaborar la grafica de la función </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  4. 4. <ul><li>  Para realizar la grafica de una función, primero se debe determinar cual es su Dominio. </li></ul><ul><li>Aquí, se explicara como obtener el dominio de una función y d que manera se puede elaborar la grafica de una forma rápida según el tipo de función que se tenga. </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  5. 5. <ul><li>  </li></ul><ul><li>En esta primera unidad veremos lo que son : </li></ul><ul><li>  </li></ul><ul><li>Métodos de exploración para la obtención de ceros, aplicables a las funciones polinomiales de grado 3 y 4 y factorizables. </li></ul><ul><li>Ecuaciones bicuadráticas. </li></ul><ul><li>División sintética. </li></ul><ul><li>Ecuaciones cúbicas que se resuelven por factorización directa. </li></ul><ul><li>Método de bisección. </li></ul><ul><li>Bosquejo de la grafica de una función polinomial. </li></ul><ul><li>Intersección de la grafica con los ejes cartesianos. </li></ul><ul><li>Análisis de comportamiento de las funciones polinomicas. </li></ul><ul><li>Traslación horizontal y vertical.. </li></ul><ul><li>Notación de intervalo. </li></ul><ul><li>La no-interrupción de la grafica. </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  6. 6. <ul><li>Existen muchas situaciones en la práctica en las que se establece la relación entre los elementos de dos conjuntos, por ejemplo: </li></ul><ul><li>Si el Kg de azúcar tiene un costo de $5, ¿Cuánto se pagara por 2, 3, 4.5, 5 y 6.5 Kg? </li></ul><ul><li>Solución: (2, $10) (3, $15) (4.5, $22.5) (5, $25) (6.5, $32.5) </li></ul><ul><li>Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  7. 7. Definición de función <ul><li>“ una función es un conjunto de parejas ordenadas, en donde no hay dos parejas con el mismo primer elemento” </li></ul><ul><li>El conjunto de los primeros elementos de las parejas se le llama dominio ya l conjunto de los segundos elementos de las parejas se les llama ámbito o contradominio. Y para establecer la asociación entre los elementos del dominio con lo elementos del contradominio se emplea una regla de correspondencia. </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  8. 8. <ul><li>Ejemplo: </li></ul><ul><li>Dominio= {Cecilia, miguel, Joel, Francisco, Verónica, Alejandro, Jazmín, Norma, Juan, Fabiola} </li></ul><ul><li>Regla de correspondencia= “calificaciones del primer mes en matemáticas” </li></ul><ul><li>Contradominio= {6, 5, 7, 8, 6, 7.5, 3, 6} </li></ul><ul><li>Como se puede observar la regla de correspondencia puede ser una expresión verbal, un modelo matemático, que represente una situación real, o simplemente una expresión algebraica por ello se puede expresar otra definición mas formal de concepto de función: </li></ul><ul><li>“ una función es la regla de correspondencia en la cual todo elemento de un conjunto D (dominio) esta asociado con uno y solo un elemento de otro conjunto C (contradominio) </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  9. 9. 1.2.1 notación de funciones <ul><li>Para denotar una función se emplea la siguiente notación: </li></ul><ul><li>f: A  B ( se lee como “función de A en B”) </li></ul><ul><li>A y B por lo general serán conjuntos de números reales y la regla de correspondencia se establecerá por medio de una expresión algebraica y se utilizara la notación: </li></ul><ul><li>F(x) (se leerá como “función de x”) </li></ul><ul><li>En donde, x es un elemento del dominio, por ejemplo f(x)=x-2. </li></ul><ul><li>Al sustituir un valor del dominio se escribirá de la forma siguiente; por ejemplo si en la expresión anterior se considera x=5; entonces, f(5)=5-2; f(5)=3; por lo tanto se obtiene la pareja de (5,3) </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  10. 10. 1.3Concepto de función polinomial <ul><li>Las funciones se clasifican, de acuerdo con la regla de correspondencia, como: funciones algebraicas (polinomiales, racionales y con radicales), exponenciales, logarítmicas y trigonométricas. </li></ul><ul><li>Existen tres formas para mostrar el comportamiento de una función: una tabla que muestre al conjunto de parejas, la formula o expresión algebraica de la regla de correspondencia y la grafica dela función. </li></ul><ul><li>La grafica de una función es de gran ayuda para observar como se comporta dentro de su dominio o en algún intervalo de valores de este. Se emplea el sistema de coordenadas rectangulares para elaborar la grafica de la función. </li></ul><ul><li>Para realizar la grafica de una función, primero se debe determinar cual es su dominio. Aquí, se explicara como obtener el dominio de una función y de que manera se puede elaborar la grafica de una forma rápida según el tipo de función que se tenga. </li></ul>UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  11. 11. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; ECUACIONES BICUADRATICAS
  12. 12. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; ECUACIONES BICUADRATICAS La ecuacion x 4 -8x 2 +15=0 es una ecuacion de grado cuarto, sin embargo se puede transformar y expresar en forma de una ecucion cuadratica al sustituir x 2 por otra letra. Si x 2 =b, entonces x 4 es igual a b 2. Por lo tanto la ecuacion quedaria como: b 2- 8b+15=0
  13. 13. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; b 2- 8b+15=0 ( b-3) (b-5) b-3=0 b-5=0 b=3 b=5 Y como b=x 2 se tienen que obtener las raices de ambas = -2.2 Y 2.2 = -1.7 Y 1.7 Despues de esto la ecuacion se resuelve como una ecuacion cuadratica:
  14. 14. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Y la grafica de la funcion x 4 -8x 2 +15=0 queda de este modo:
  15. 15. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Determina las raices de las siguientes ecuaciones a partir de los criterios de solucion expuestos en esta seccion. </li></ul><ul><li>x 4 -8x 2 +15=0 e) x 4 -17x 2 +16=0 i) x 4 +4x 2 -32=0 </li></ul><ul><li>x 4 -13x 2 +36=0 f) x 4 +5x 2 +6=0 j) x 4 -3x 2 +2=0 </li></ul><ul><li>x 4 -5x 2 +4=0 g) x 4 +2x 2 -15=0 </li></ul><ul><li>x 4 -x 2 -6=0 h) x 4 +13x 2 +36=0 </li></ul>EJERCICIOS:
  16. 16. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; DIVISION SINTETICA
  17. 17. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>La division sintetica de la funcion 2x 3 -x 2 -5x+7 entre x-3 se realiza de este modo: </li></ul><ul><li>Se escriben los coeficientes del dividendo y el numero divisor (signo contrario) en el primer renglon de abajo como se indica. </li></ul><ul><li>Se escribe el primer coeficiente en el tercer renglon </li></ul><ul><li>El primer coeficiente (2) se multiplica por el numero del divisor del primer renglon (3) y el producto 2x3=6 se escribe en el segundo renglon exactamente dabajo del segundo coeficiente (-1) para despues sumarlos. La sume se escribe en el tercer renglon </li></ul><ul><li>Se continua este proceso repitiendo el paso anterior, es decir, ahora se multiplica (5) por el numero del divisor del primer renglon (+3) y el producto de 5x3=15 se escribe en el segundo renglon exactamente debajo del tercer coeficiente (-5) para despues sumarlos. La sume de 15+(-5)=10 se escribe en el tercer renglon . </li></ul><ul><li>Continuamos con este proceso hasta acabar con la division. </li></ul>
  18. 18. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1 er renglon 2 do renglon 3 er renglon La division queda asi: Dividendo divisor 2x 3 -x 2 -5x+7 X-3 2 –1 –5 +7 3 6 15 30 2 5 10 37
  19. 19. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>EJERCICIO: </li></ul><ul><li>Realizar las divisiones siguientes aplicando la division sintetica: </li></ul><ul><li>(x 3 -3x 2 -x-2) % (x-2) f) (4x 3 +10x 2 -5x+3) % (x+3) </li></ul><ul><li>(3x 3 -8x 2 -4x+3) % (x-3) g) (x 3 -7x 2 +14x-8) % (x-4) </li></ul><ul><li>(2x 3 -x 2 -2x+1) % (x+1) h) (x 3 -x 2 -22x+40) % (x-2) </li></ul><ul><li>(2x 3 +x 2 -2x-1) % (x+1) i) (x 3 -31x 2 -30) % (x+5) </li></ul><ul><li>(-3x 3 -2x 2 +7x-2) % (x+2) j) (x 3 -6x 2 -x+30) % (x-5) </li></ul>
  20. 20. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; ECUACIONES CUBICAS QUE SE RESUELVEN POR FACTORIZACION DIRECTA
  21. 21. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Vamos a resolver la funcion f(x)=x 3 +3x 2 -4x-12=0 </li></ul><ul><li>Tomamos al termino que no tiene incognita y buscamos sus posibles multiplos: </li></ul><ul><li>-12= 1,2,3,4,6,12 </li></ul><ul><li>2.Tomamos a 2 y lo despejamos: </li></ul><ul><li>X+2=0 </li></ul><ul><li>X=-2 </li></ul><ul><li>3.Despues vemos si vale cero con la funcion de: </li></ul><ul><li>F(-2)=0 </li></ul>
  22. 22. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 4. Como nos dio de resultado cero eso quiere decir que es correcto y ahora lo que sigue es dividir la funcion x 3 +3x 2 -4x-12=0 entre el x+2 que teniamos como resultado antes. Con esto nos queda la funcion cuadratica: x 2 +x-6 Despues de eso solo nos queda encontrar las ultimas dos raices y eso se hace buscando dos numeros que multiplicados nos den –6 y sumados 1 y esos numeros son: (x+3) (x-2) Dividendo divisor X 3 +3x 2 -4x-12 X+2 1 3 -4 -12 -2 -2 -2 12 1 1 -6 0
  23. 23. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Con eso ya obtuvimos las tres raices que son: (x+2) (x-2) (x+3) Y las cordenadas quedan como: x=-2 x=2 x=-3 Despues obtenemos el vertice con: F(0)=-12 Encontramos los puntos en la grafica que queda de este modo:
  24. 24. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  25. 25. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>EJERCICIO: </li></ul><ul><li>Realizar las operaciones necesarias para encontrar el valor de las raices o soluciones de las siguientes ecuaciones cubicas. </li></ul><ul><li>x 3 +6x 2 +11x+6=0 6. x 3 -19x+30=0 </li></ul><ul><li>x 3 -7x+6=0 7. x 3 -x 2 -8x+12=0 </li></ul><ul><li>x 3 +4x 2 +x-6=0 8. x 3 +x 2 -21x-45=0 </li></ul><ul><li>x 3 -8x 2 +17x-10=0 9. X 3 -21x 2 -20=0 </li></ul><ul><li>x 3 +3x 2 -13x-15=0 10. x 3 +7x 2 +2x-40=0 </li></ul>
  26. 26. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; METODOS DE BISECCION
  27. 27. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Resolvamos la funcion f(x)=2x 3 -7x 2 +x+10 y se propone que para esto se asignen los valores de –3,-2,-1,0,1,2,3 para obtener f(-3), f(-2), f(-1), f(0), f(1), f(2), f(3) f(-3)= 2(-3) 3 -7(-3) 2 +(3)+10 f(-3)=-54-63-3+10 F(-3)=-110 ------------------------------------P(-3,-110) f(-2)= 2(-2) 3 -7(-2) 2 +(-2)+10 f(-2)=-16-28-2+10 F(-2)=-36 ------------------------------------P(-2,-36)
  28. 28. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; f(-1)= 2(-1) 3 -7(-1) 2 +(-1)+10 f(-1)=-2-7-1+10 f(-1)=0 ------------------------------------P(-1,0) f(0)= 2(0) 3 -7(0) 2 +(0)+10 f(0)=0-0-0+10 F(0)=10 ------------------------------------P(0,10) f(1)= 2(1) 3 -7(1) 2 +(1)+10 f(1)=2-7+1+10 f(1)=6 ------------------------------------P(1,6)
  29. 29. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; f(2)= 2(2) 3 -7(2) 2 +(2)+10 f(2)=16-28+2+10 f(2)=0 ------------------------------------P(2,0) f(3)= 2(3) 3 -7(3) 2 +(3)+10 f(3)=54-63+3+10 f(3)=4 ------------------------------------P(3,4) Despues de esto buscamos todas esta coordenadas en nuestro grafica y esta queda asi:
  30. 30. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  31. 31. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Se evalua la funcion f(x)=2x 2 -7x 2 +x+10 para Obteniendo: Se observa que la cueva perteneciente a la grafica de la funcion f(x)=2x 2 -7x 2 +x+10 corta al eje de las abscisas en tres puntos; los dos primeros exactamente, en x 1 =-1 y x 2 =2, pero el tercero se encuentra en el intervalo (a,b)=(2,3) por lo que se determina el punto medio de este intervalo mediante.
  32. 32. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  33. 33. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Efectivamente el tercer punto donde la cuerva corta el eje de las abscisas tiene como coordenadas En consecuencia, las raices o ceros de la funcion son:
  34. 34. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>EJERCICIO: </li></ul><ul><li>Construya la grafica con las funciones siguientes y a partir de ellas aplique el metodo de biseccion para determinar sus raices o soluciones </li></ul><ul><li>f(x)=4x 3 -15x 2 -9x+20 6. f(x)=8x 3 -14x 2 -36x+21 </li></ul><ul><li>f(x)=4x 3 +5x 2 -4x-5 7. f(x)=8x 3 -28x 2 -35x+1 </li></ul><ul><li>f(x)=x 3 -2.25x 8. f(x)=8x 3 +22x 2 -9x-9 </li></ul><ul><li>f(x)=-2x 3 +7x 2 +8x-28 9. f(x)=-2x 3 +5x 2 +21x-36 </li></ul><ul><li>f(x)=-2x 3 -x 2 -6x 10. f(x)=-8x 3 +12x 2 -26x-15 </li></ul>
  35. 35. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; BOSQUEJO DE UNA GRAFICA DE UNA FUNCION POLINOMIAL
  36. 36. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; A partir de una grafica de una funcion polinomial se puede realizar un analisis sobre el comportamiento de la misma. Si bien algunos de los elementos se han destacado en las secciones previas, es importante considerarlas nuevamente
  37. 37. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1.5.1 Intersecciones de la gráfica con los ejes cartesianos. <ul><li>En una grafica, para que esta se vaya, se necesitan ciertos puntos, los cuales al unirlos en un respectivo orden, formaran una gráfica, ya sea lineal, cuadrática, cubica, cuarta, etc., y de esta manera estos puntos tendrán intersección con el valor de las incógnitas presentes en la ecuación. </li></ul><ul><li>Cabe mencionar que dichos puntos tendrán intersecciones con los ejes, es decir, se ubicaran en los ejes, ya sea eje x o eje y, lo cual permitirá la unión de estos, y así saber el valor de dichas incógnitas. </li></ul>
  38. 38. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Si tenemos la función cuadrática: </li></ul><ul><li>X2+15x+56=0 </li></ul><ul><li>Esta se resolverá por la formula general: </li></ul><ul><li>a=1 </li></ul><ul><li>b=15 </li></ul><ul><li>c=56 </li></ul>Por ejemplo:
  39. 39. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  40. 40. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; F(0)=x(0)+15(0)+56 F(0)=56
  41. 41. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot;
  42. 42. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>En este caso, de acuerdo a la formula general obtuvimos las intersecciones en el eje X y en el eje Y, y así mismo estas las graficamos, obteniendo de esta manera la grafica que muestra una parábola por el hecho de que la función es cuadrática. </li></ul>
  43. 43. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>En forma resumida, podemos decir, que las intersecciones de la grafica con los ejes cartesianos nos dan el resultado de la ecuación, es decir nos muestran el valor de las incógnitas presentes en la ecuación. </li></ul>
  44. 44. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Resuelve los siguientes ejercicios y señala sus intersecciones con los ejes cartesianos. </li></ul><ul><li>a) 4x2+3x-22=0 </li></ul><ul><li>b) x2+11x-24=0 </li></ul><ul><li>c) x2-16x-63=0 </li></ul><ul><li>d) -9x2+12x-4=0 </li></ul><ul><li>e) 5x2-7x-90=0 </li></ul><ul><li>f)-10x2+x+11=0 </li></ul><ul><li>g) 49x2-70x+25=0 </li></ul><ul><li>h) -7x2+12x+64=0 </li></ul><ul><li>i)32x2+18x-17=0 </li></ul><ul><li>j) x2+7x+10=0 </li></ul>Ejercicios:
  45. 45. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1.5.2 Análisis de comportamiento de las funciones polinomiales. <ul><li>Las funciones polinomicas son aquellas que surgen de evaluar los polinomios sobre las variables en las que están definidos. </li></ul><ul><li>A las funciones polinomicas de </li></ul><ul><li>grado 0 se les llama funciones constantes. </li></ul><ul><li>grado 1 se les llama funciones lineales, </li></ul><ul><li>grado 2 se les llama funciones cuadráticas, </li></ul><ul><li>grado 3 se les llama funciones cúbicas. </li></ul>
  46. 46. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Y cada una de estas funciones, igualmente de acuerdo al numero de incógnitas que se presenten serán los valores encontrados en las ecuaciones. </li></ul><ul><li>Cabe mencionar que en las funciones polinomiales la grafica presentara un valor ya sea positivo o negativo, una cierta característica en la grafica ya sea creciente o decreciente, así como también presentara concavidad que es la forma en que se dobla ala curva. </li></ul>
  47. 47. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; -x2+5x-4=0 Cabe señalar que en este tipo de graficas es importante encontrar el vértice, y este lo podremos encontrar con las siguiente formula: Por ejemplo:
  48. 48. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Desarrollándola de acuerdo a las valores que nos dan en la ecuación: <ul><li>Enseguida este valor obtenido lo sustituimos en la ecuación original: </li></ul><ul><li>-(2.5)2+5(2.5)-4=0 </li></ul><ul><li>-6.25+12.5-4=2.25 </li></ul><ul><li>dándonos la siguiente coordenada: (2.5,2.2) </li></ul>
  49. 49. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Y sustituyendo los valores de la ecuación obtendremos esto: -x2+5x-4 a=-1 b=5 c=-4
  50. 50. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Estos valores obtenidos serán los que intersecten en el eje de las X, mientras que para hallar el valor de Y basta con encontrar el vértice, y este se encontrara con la formula anteriormente mencionada, y una vez encontrado el vértice, este con su mismo valor nos estará mostrando el valor de Y, y una vez encontrado el vértice, encontraremos el punto mas alto de la grafica.
  51. 51. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>De acuerdo a la ecuación realizada anteriormente, veamos sus intersecciones el en plano cartesiano: </li></ul>
  52. 52. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Resuelve las siguientes funciones polinomiales: </li></ul><ul><li>a) X+4=0 </li></ul><ul><li>b) X-20=9 </li></ul><ul><li>c) 3x2+5x-2=0 </li></ul><ul><li>d) -x2+5x-4=0 </li></ul><ul><li>e) (x3-x2-22x+40)/x-2 </li></ul><ul><li>f) (x3-3x2-x-2)/x-2 </li></ul><ul><li>g) (x4+2x3-10x2-11x-7)/x-3 </li></ul><ul><li>h) (2x4+7x3+x+11)/x+3 </li></ul><ul><li>i) x4-3x2+2=0 </li></ul><ul><li>j) x4-17x2+16=0 </li></ul>Ejercicios.
  53. 53. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; 1.5.3 Traslación horizontal y vertical. <ul><li>Traslación horizontal: esta se observa al agregar la constante h , de la forma f(x+h) genera que la grafica de la función f(x) se desplace hacia la izquierda , es decir horizontalmente. </li></ul><ul><li>Veamos el siguiente ejemplo: </li></ul><ul><li>F(x)= -x2-2x+3 </li></ul><ul><li>A=-1 </li></ul><ul><li>B=-2 </li></ul><ul><li>C=3 </li></ul><ul><li>Para obtener el vértice aplicamos la siguiente formula: </li></ul><ul><li>Sustituyéndolo de la siguiente manera: </li></ul><ul><li>V=-(-2)/2(-1) </li></ul><ul><li>V=2/-2 </li></ul><ul><li>Vx= -1 </li></ul><ul><li>Enseguida sustituyendo este valor en la ecuación original para obtener las 2 coordenadas del vértice. </li></ul><ul><li>-(-1)2-2(-1)+3 = 4 </li></ul><ul><li>Dándote así la siguiente coordenada: (-1, 4) </li></ul>
  54. 54. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; X1=-3 y1=0 X2=1 y2=0 Sabiendo que los valores otorgados a y fue en función de 0 para ambos casos.
  55. 55. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>La forma en que la grafica se presenta es así: </li></ul><ul><li>Observando que la traslación es horizontal. </li></ul>
  56. 56. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Traslación vertical: esta se producirá si se agrega la constante h de la forma f(x)+h , provoca que la grafica de la función se desplace hacia arriba , es decir verticalmente. </li></ul><ul><li>Veamos el siguiente ejemplo: </li></ul><ul><li>F(x)=-x2+3x </li></ul><ul><li>A=-1 </li></ul><ul><li>B=3 </li></ul><ul><li>C=0 </li></ul><ul><li>Para obtener el vértice aplicamos la siguiente formula: </li></ul><ul><li>Sustituyéndolo de la siguiente manera: </li></ul><ul><li>V=-3/2(-1) </li></ul><ul><li>V=-3/-2 </li></ul><ul><li>Vx=1.5 </li></ul><ul><li>Enseguida sustituyendo este valor en la ecuación original para obtener las 2 coordenadas del vértice. </li></ul><ul><li>-(1.5)2+3(1.5) </li></ul><ul><li>-2.25 </li></ul><ul><li>Dándote así la siguiente coordenada: (1.5, 2.25) </li></ul>
  57. 57. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Para obtener las coordenadas de (x, y) y graficarlas, puedes utilizar la formula general: </li></ul><ul><li>X1=0 y1=0 </li></ul><ul><li>X2=3 y2=0 </li></ul><ul><li>Sabiendo que los valores otorgados a Y fue en función de 0 para ambos casos. </li></ul>
  58. 58. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>La forma en que la grafica se presenta es así: </li></ul><ul><li>Observando que su traslación es vertical. </li></ul>
  59. 59. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>En análisis, se denomina intervalo a todo  subconjunto conexo  de la  recta real . Más precisamente, son las únicas partes  I  de  R  que verifican la siguiente propiedad: </li></ul><ul><li>si  x  e  y  pertenecen a  I , x ≤ y, entonces para todo z tal que x ≤ z ≤ y, z pertenece a  I . </li></ul><ul><li>Notación </li></ul><ul><li>Para representar intervalos, usan habitualmente dos notaciones, por ejemplo, para representar el conjunto de los x tal que a ≤ x < b se puede representar [a; b) o bien [a; b] . La primera es la vigente en el mundo anglosajón, la segunda en Francia y en la francofonía. La regla del corchete invertido resulta más intuitiva si uno se imagina que el corchete es una mano que tira hacia fuera o empuja hacia dentro, respectivamente, un extremo del intervalo. En el ejemplo anterior,  a  pertenece al intervalo mientras que  b  no. </li></ul>1.5.4 Noción de intervalo.
  60. 60. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; Es un conjunto de números que se corresponden con los puntos de una recta o segmento, el que se encuentra un ordenamiento interno entre ellos. Los intervalos es el espacio que se da de un punto a otro en el cual se toman en cuenta todos lo puntos intermedios. Por ejemplo: en una recta tenemos un intervalo:[-2,2]entre este espacio se encuentran los números (-2-1,0,1,2) aquí se encuentra un intervalo.....ya que el espacio abarca una serie de números consecutivos que se corresponden entre sí. También existe una regla mnemotécnica para el uso del paréntesis: si se dibuja sobre la recta real dos intervalos adyacentes, como (0; 1) y (1; 2) (es decir, se pinta la recta real y se coloca cuatro paréntesis donde corresponda), entre los dos intervalos cabe un signo  1  (o lo que corresponda según los intervalos) cabe, apretado pero cabe. Mientras que si los dos intervalos son (0, 1] y [1, 2), o (0, 1] y [1, 2) el número no cabe, o cabe muy estrangulado. O sea, que  si los dos intervalos son abiertos, el número 1 no pertenece a ninguno, y por tanto hay espacio para meterlo en medio .
  61. 61. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Se pueden clasificar los intervalos según sus características  topológicas  (intervalos abiertos, cerrados y semi abiertos) o según sus características  métricas  (su longitud: nula, finita no nula, o infinita). </li></ul><ul><li>Y estos se clasifican cuando se presentan de la siguiente manera: </li></ul><ul><li>(00) mas infinito o infinita </li></ul><ul><li>(-00) menos infinito o finita </li></ul><ul><li>(00, 00) nula </li></ul>Clasificación:
  62. 62. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>4x3-9x2-21x+26 </li></ul><ul><li>26{ +-1,2,26 </li></ul><ul><li>(x+2) (x+3.25) (x+1) </li></ul><ul><li>X=-2 </li></ul><ul><li>4x3-9x2-21x+26 </li></ul><ul><li>4 -9 -21 26 -2 </li></ul><ul><li>-8 34 -26 </li></ul><ul><li>-17 13 0 </li></ul><ul><li>4x2-17x+13 </li></ul>Ejemplo:
  63. 63. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>a=4 </li></ul><ul><li>b=-17 </li></ul><ul><li>c=13 </li></ul><ul><li>X1= 3.25 </li></ul><ul><li>X2=1 </li></ul>
  64. 64. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; (x+2) (x+3.25) (x+1) X= -2 x=-3.25 x=-1 0 0 0 Y para graficar, solo trazamos estos puntos en el pleno cartesiano y obtenemos ciertas funciones como las siguientes: F(0)= 26 F(1)=0 F(-1)=34 F(2)=-20 F(-2)=0
  65. 65. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Una vez obtenidos estos valores graficamos: </li></ul>
  66. 66. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Observando que su: </li></ul><ul><li>Max Crec. (-00,-1) </li></ul><ul><li>Dec [-1,1] </li></ul><ul><li>Min Dec [1,2) </li></ul><ul><li>Crec. [2,00) </li></ul><ul><li>Esta ecuación tiene 3 raíces reales. </li></ul>
  67. 67. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Una de las características propias de las funciones polinomiales es que sus graficas no presentan saltos a lo largo de su trayectoria, lo cual indica que se pueden clasificar como funciones continuas en todo su dominio. </li></ul><ul><li>Veamos un ejemplo: </li></ul><ul><li>X2-6x+9 </li></ul><ul><li>X Y (-2)2-6(-2)+9 (3)2-6(3)+9 </li></ul><ul><li>-2 25 4+12+9= 25 9-18+9=0 </li></ul><ul><li>-1 16 (-1)2-6(-1)+9 (4)2-6(4)+9 </li></ul><ul><li>0 9 1+6+9=16 16-24+9=1 </li></ul><ul><li>1 4 (0)2-6(0)+9 (5)2-6(5)+9 </li></ul><ul><li>2 1 0-0+9= 9 25-30+9=4 </li></ul><ul><li>3 0 (1)2-6(1)+9 </li></ul><ul><li>4 1 1-6+9=4 enseguida hallamos el vértice: </li></ul><ul><li>5 4 (2)2-6(2)+9 v(-b/2 a) </li></ul><ul><li>4-12+9=1 v-(-6/2(1)) </li></ul><ul><li>v (6/2) </li></ul><ul><li>v= 3 </li></ul><ul><li>Para obtener la coordenada del vértice en el eje Y solo sustituyes el valor obtenido del vértice del eje X en la ecuación original: </li></ul><ul><li>(3)2-6(3)+9 </li></ul><ul><li>9-18+9= 0 </li></ul><ul><li>Dándote así la siguiente coordenada: (3,0) que corresponde a la coordenada del vértice. </li></ul>1.5.5 La no-interrupción de la grafica.
  68. 68. UNIDAD 1 &quot;FUNCIONES POLINOMIALES&quot; <ul><li>Para graficar solo nos fijamos en los valores que nos dieron al tabular y el vértice, una vez esto, ubicamos los puntos en el plano cartesiano: </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×