Hipotesis (ji) p resentacion
Upcoming SlideShare
Loading in...5
×
 

Hipotesis (ji) p resentacion

on

  • 6,336 views

 

Statistics

Views

Total Views
6,336
Views on SlideShare
6,319
Embed Views
17

Actions

Likes
0
Downloads
159
Comments
1

2 Embeds 17

http://www.slideshare.net 15
http://eieq1radtusi.blogspot.com 2

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Hipotesis (ji) p resentacion Hipotesis (ji) p resentacion Presentation Transcript

  • UNIVERSIDAD VERACRUZANA
    PLANTEAMIENTO DE LA HIPOTESIS PARA MAS DE 2 POBLACIONES
    ESTADISTICA
    INFERENCIAL
    • CHI CUADRADO
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    PLANTEAMIENTO DE HIPOTESIS EN MAS DE DOS POBLACIONES (Ji-Cuadrada)
    INDICE
    Introducción…………………………………………………………………3
    Aplicación……………………………………………………………………..3
    Teoría…………………………………………………………………………………5
    Supuestos y Restricciones…………………………………………………………6
    Gráficos………………………………………………………………………………8
    Formulas…………………………………………………………………………12
    Tablas…………………………………………………………………………………13
    Utilidad
    Ejemplos (5)……………………………………………………………………16
    Ejercicios –Resolución (20)……………………………………………17
    Glosario………………………………………………………………………………….49
    Fuente Bibliográfica………………………………………………………………..51
    Formulario……………………………………………………………………………12
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    INTRODUCCION
    En estadística, la distribución χ² (de Pearson) es una distribución de probabilidad continua con un parámetro k que representa los grados de libertad de la variable aleatoria:
    donde Zi son variables de distribución normal, de media cero y varianza uno. El que la variable aleatoria X tenga esta distribución se representa habitualmente así: .
    Es conveniente tener en cuenta que la letra griega χ se transcribe al latín como chi[1] y se pronuncia en castellano como ji.[2][3]
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    APLICACIONES
    La distribución χ² tiene muchas aplicaciones en inferencia estadística, por ejemplo en la denominada prueba χ² utilizada como prueba de independencia y como prueba de bondad de ajuste y en la estimación de varianzas. También está involucrada en el problema de estimar la media de una población normalmente distribuida y en el problema de estimar la pendiente de una recta de regresión lineal, a través de su papel en la distribución t de Student, y participa en todos los problemas de análisis de varianza, por su papel en la distribución F de Snedecor, que es la distribución del cociente de dos variables aleatorias independientes con distribución χ².
    PRUEBAS DE 2 
    BONDAD DE AJUSTE
    Se utiliza para la comparación de la distribución de una muestra con alguna distribución teórica que se supone describe a la población de la cual se extrajo.
    INDEPENDENCIA
    La Ho indica que 2 variables o criterios de clasificación son independientes cuando se aplican a un conjunto de individuos (unidades de observación)
    Totales Marginales Aleatorios
    HOMOGENEIDAD
    Se extraen Muestras Independientes de varias poblaciones y se prueban para ver si son homogéneas con respecto a algún criterio de clasificación.
    Un conjunto de Totales Marginales Son Fijos mientras que los otros marginales son Aleatorios.
     
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    Bondad de Ajuste (para una multinominal)
     
    Esta es una prueba para comparar las probabilidades de (πi) de una distribución multinominal (lo esperado), con las obtenidas en una muestra (lo observado) para determinar si son iguales o no.
    Distribución Multinominal
    La Distribución Multinominaal es una extensión de la distribución Binominal. En vez de haber solo dos posibles resultados (éxitos y fracasos) tenemos k posibles resultados.
    Al igual que en la Binominal:
    Los experimentos son Independientes
    Hay un número fijo de experimentos
    La probabilidad de que ocurra cada uno de los resultados en un experimento π1,.. π2… πk..es constante.
     
    La prueba de Ji Cuadrado es un método útil para comparar resultados experimentales con aquellos que se esperan teóricamente en virtud de una hipótesis.
     
    La distribución ji_cuadrada nos permite probar, si dos o más proporciones de población pueden ser consideradas iguales.
    Si clasificamos a una población en diferentes categorías con respecto a dos atributos (edad, y desempeño en el trabajo), podemos utilizar una prueba ji_cuadrada, para comprobar si los dos atributos son independientes entre sí. la distribución Ji cuadrada, se denota por la letra griega X(Ji), elevada al cuadrado: X2.
    A medida que aumentan los grados de libertad la curva se va haciendo más simétrica y su cola derecha se va extendiendo.
    Características de la distribución
    Todos los valores de x2 son positivos.
    Es una curva sesgada hacia la derecha.
    La media de la distribución son sus grados de libertad
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    TEORIA
    Distribución de Ji- cuadrado (²)
    Distribución de datos discretos, que es función de la densidad
    poblacional y cuyos valores varían desde cero hasta +(infinito
    positivo).
    A diferencia de la distribución Normal o la de t (Test de Student o de t),
    la función se aproxima asintóticamente al eje horizontal sólo en la cola
    derecha de la curva y NO en ambas colas.
    Como en la distribución de t, no hay solo una distribución de ji- cuadrado
    (²) sino que existe una distribución para cada número de grados
    de libertad (). Por tanto, es función .
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    Las curvas son en forma de (jota invertida) al principio, pero más o
    menos acercándose a la simetría para los grados de libertad superiores.
     
    análisis de frecuencias.
    Pruebas de Bondad de Ajuste.
     Para evaluar el ajuste entre frecuencias observadas y esperadas existen
    estadísticos que prueban en qué medida difieren las mismas y si esa
    diferencia es significativa o no.
     Hay dos métodos que son los más utilizados:
     Método de Ji- cuadrado o Chi- cuadrado (²)
     Método G o prueba del logaritmo de la razón de Verosimilitudes
    Método de Ji- cuadrado o Chi- cuadrado (²)
    Donde fo= frecuencia observada
    fe = frecuencia esperada X²= ∑ (fo- fe)² /fe
     La razón por la que la que esta prueba se ha denominado Ji- cuadrado y
    por la que muchos han llamado así también al estadístico obtenido X²,
    es que la distribución de muestreo de esta sumatoria se aproxima a la
    de una distribución de ² con = 1 grados de libertad.
     La prueba es siempre a una cola ya que las desviaciones están
    elevadas al cuadrado y conducen siempre a valores positivos
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    PROPIEDADES DE LAS DISTRIBUCIONES JI_CUADRADAS
    l.-Los valores de x2 son mayores o iguales que O
    2.-La forma de una distribución x2 depende del g I =n-l. En consecuencia hay un número infinito de distribuciones x2.
    3.-EI área bajo una curva ji_cuadrada y sobre el eje horizontal es 1.
    4.-Las distribuciones x2 no son simétricas, tienen colas estrechas que se extienden a la derecha; están sesgadas a la derecha.
    5.-cuando n>2 la media de una distribución x2 es n-l y la varianza es 2(n-l). 6.-EI valor modal de una distribución x2 se da en el valor (n-3).
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    SUPUESTOS Y RESTRICCIONES
     
    SUPUESTOS PARA LA PRUEBA DE 2 
    Experimento multinomial. Lo que se satisface tomando una muestra aleatoria de la población de interés.
    El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea  5, para  asegurar que 2 se aproxime a la distribución real (multinomial).
    Se puede recurrir a colapsar categorías contiguas (celdas) con valores esperados menores de 5.
     
    La prueba estadística es: 
    Donde pio representa  la proporción deseada en la i-ésima categoría, Obsi la frecuencia observada en la categoría  i  y  n es el tamaño de la muestra.  
    La prueba estadística se distribuye como una Ji-Cuadrado con k-1 grados de libertad donde, k es el número de categorías.
    Si el valor de la prueba estadística (2 calculado) es mayor que el valor crítico (2 de la tabla) se rechaza la hipótesis nula 
    Ei: frec. Esperada de la i-ésima clase
    Oi: frec. Observada de la i-ésima clase
    N: número de clases
    k: número de parámetros estimados a partir de  la muestra
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    La chi cuadrada permite al investigador comprobar una hipótesis acerca de una relación entre dos medidas nominales. La lógica x2 es la siguiente: el número total de observaciones en cada columna en cada columna y el número total de observaciones en cada renglón (positivo o negativo) son considerados o fijados y se conoce como frecuencia marginal.
    Existen abusos de esta prueba estadística como su empleo en grupos independientes cuyas variables son numéricas, para lo cual debería usarse la t y no convertir los valores ordinales o nominales. Un ejemplo frecuente es usar puntos de corte arbitrariamente como la edad de 45 o 60 años cuando los datos numéricos con la estadística correspondiente nos brindan más información.
     
    Desventajas del método:
    1) Deben agruparse aquellas clases con una frecuencia esperada menor o igual a 5 (fe≤5), hasta que su suma alcance un valor mayor o igual a 5 (∑fe≥5).
     
    Por esta restricción, el agrupamiento produce una reducción en el número de clases y es frecuente entonces que el número de grados de libertad no sea suficiente para evaluar estadísticamente el ajuste.
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
    Desventajas del método:
    1) Deben agruparse aquellas clases con una frecuencia esperada menor o igual a 5 (fe≤5), hasta que su suma alcance un valor mayor o igual a 5 (∑fe≥5).
     
    Por esta restricción, el agrupamiento produce una reducción en el número de clases y es frecuente entonces que el número de grados de libertad no sea suficiente para evaluar estadísticamente el ajuste.
     
    Por ello, Cochran(1954; Snedecor & Cochran, 1967) ha considerado que tal restricción debilita la sensibilidad del test y ha sugerido que los valores esperados no deben ser menores a 1 (∑fe≥1) y no a 5.
    El número de grados de libertad es entonces:
    µ=n° de clase luego de la agrupación –a-1
     
    Teniendo a la interpretación mencionada más abajo.
    2) El número de grados de libertad es µ= n-a-1, donde a es el número de parámetros estimados para ajustar el modelo elegido; de manera que el número mínimo de clases que se pueden comparar es:
     
    3, para el modelo de Poisson. El parámetro de este modelo es λ
    (Lambda) y como los grados de libertad de cualquier distribución no pueden
    ser menores a la unidad (µ ≥1):
    µ= n-a-1
     
    Siendo a=λ=1 parámetro
    µ= n-2
    Por tanto n debe ser ≥ 3
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
    GRAFICOS
    GRAFICA DISTRIBUCION JI CUADRADA PARA V= 2, 5, Y 10 GRADOS DE LIBERTAD
     
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
    Distribución Ji cuadrada para v=2,5 y 10.
    La estadística de Ji cuadrada se calcula de la manera siguiente:
    Esta fórmula establece que ji_cuadrada, o x2, es la suma que obtendremos si:
    1.- Restamos Fe de Fo para cada una de las celdas de la tabla
    2.-Elevamos al cuadrado cada una de las diferencias
    3.- Dividimos cada diferencia al cuadrado entre Fe, y
    4.-Sumamos los resultados
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
      
    La función de densidad de la distribución X2 está dada por:
    para x>0
    la cual da valores críticos (gl) para veinte valores especiales de . Para denotar el valor crítico de una distribución X2 con gl grados de libertad se usa el símbolo (gl); este valor crítico determina a su derecha un área de bajo la curva X2 y sobre el eje horizontal. Por ejemplo para encontrar X20.05(6) en la tabla se localiza 6 gl en el lado izquierdo y a o largo del lado superior de la misma tabla.
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
    FORMULA
    La fórmula es:
    Donde:
    X2 = valor estadístico de ji cuadrada.
    fo = frecuencia observada.
    fe = frecuencia esperada.
     
    Pasos:
    Arreglar las observaciones en una tabla de contingencias.
    Determinar el valor teórico de las frecuencias para cada casilla.
    Calcular las diferencias entre los valores observados con respecto a los teóricos de cada casilla.
    Elevar al cuadrado las diferencias y dividirlas entre el valor teórico de la casilla correspondiente.
    Obtener la sumatoria de los valores anteriores, que es el estadístico X2.
    Calcular los grados de libertad (gl): gl = (K columnas -1) [H hileras -1].
    El valor de X2 se compara con los valores críticos de ji cuadrada de la tabla de valores críticos de X2 y de acuerdo con los grados de libertad, y se determina la probabilidad.
    Decidir si se acepta o rechaza la hipótesis X2c ³ X2t se rechaza Ho.
     
     
     
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
    FORMULA
    La fórmula es:
    Donde:
    X2 = valor estadístico de ji cuadrada.
    fo = frecuencia observada.
    fe = frecuencia esperada.
     
    Pasos:
    Arreglar las observaciones en una tabla de contingencias.
    Determinar el valor teórico de las frecuencias para cada casilla.
    Calcular las diferencias entre los valores observados con respecto a los teóricos de cada casilla.
    Elevar al cuadrado las diferencias y dividirlas entre el valor teórico de la casilla correspondiente.
    Obtener la sumatoria de los valores anteriores, que es el estadístico X2.
    Calcular los grados de libertad (gl): gl = (K columnas -1) [H hileras -1].
    El valor de X2 se compara con los valores críticos de ji cuadrada de la tabla de valores críticos de X2 y de acuerdo con los grados de libertad, y se determina la probabilidad.
    Decidir si se acepta o rechaza la hipótesis X2c ³ X2t se rechaza Ho.
     
     
     
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
     
     
    UTILIDAD EJEMPLOS
     
    Se utiliza en el campo de la medicina, en hospitales, para realizar estudios en pacientes que padecen de cierta enfermedad o trastorno.
    Por ejemplo:
    La asociación entre reflujo gastroesofagico diurno y nocturno con la exposición esofágica al acido en 24h fue evaluada en 59 pacientes con pirosis 4 veces a la semana ene los últimos 6 meses.
    Ele ejemplo trata de relacionar la asociación entre estas dos variables nominales y cualitativas categóricas: 1. Presencia de reflujo gastroesofàgico nocturno o diurno y 2. Acidez esofágica en 24 h.
    La X cuadrada es una estadística frecuentemente usada para comparar proporciones en la literatura médica. Los datos nominales (categóricos) obtenidos de una muestra con n observaciones independientes son ordenados en una tabla de renglones y columnas.
     
    En la agronomía, se utiliza para estudiar el comportamiento de los cultivos.
    Por ejemplo:
    Si una mazorca de maíz, resultado de una cruza dihíbrida para estos caracteres, tiene un total de 381 granos, incluyendo 216 púrpuras y lisos, 79 púrpuras y rugosos, 65 amarillos y lisos, y 21 amarillas y rugosos. Indique realizando una prueba de Ji cuadrada si estos resultados concuerdan con su hipótesis.
     
    En la economía, para realizar estudios acerca de los ingresos de la población.
    Por ejemplo:
    Se toma una muestra aleatoria de 2200 familias y se les clasifica en una tabla de doble entrada según su nivel de ingresos (alto, medio o bajo) y el tipo de colegio a la que envían sus hijos. La siguiente tabla muestra los resultados obtenidos: ¿A un nivel de significancia del 1% hay razón para creer que el ingreso y el tipo de colegio no son variables independientes?
     
     
     
    PROGRAMA DE ESTUDIO
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
     
    Los 20 ejemplos se encuentran en el documento de word
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
     
    GLOSARIO
    Distribución de probabilidad:
    En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los eventos rango de valores de la variable aleatoria.
    Grados de Libertad:
    En estadística, grados de libertad es un estimador del número de categorías independientes en una prueba particular o experimento estadístico. Se encuentran mediante la fórmula n − r, donde n=número de sujetos en la muestra (también pueden ser representados por k − r, donde k=número de grupos, cuando se realizan operaciones con grupos y no con sujetos individuales) y r es el número de sujetos o grupos estadísticamente dependientes.
    Distribución Normal:
    En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
     
    Varianza:
    En teoría de probabilidad, la varianza de una variable aleatoria es una medida de su dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.
    Hipótesis Estadística:
    Al intentar alcanzar una decisión, es útil hacer hipótesis (o conjeturas) sobre la población aplicada.
    Tales hipótesis, que pueden ser o no ciertas, se llaman hipótesis estadísticas.
    Son, en general, enunciados acerca de las distribuciones de probabilidad de las poblaciones.
    Hipótesis Nula:
    En muchos casos formulamos una hipótesis estadística con el único propósito de rechazarla o invalidarla. Así, si queremos decidir si una moneda está trucada, formulamos la hipótesis de que la moneda es buena ( o sea p = 0,5, donde p es la probabilidad de cara).
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
     
    Analógicamente, si deseamos decidir si un procedimiento es mejor que otro, formulamos la hipótesis de que no hay diferencia entre ellos (o sea. Que cualquier diferencia observada se debe simplemente a fluctuaciones en el muestreo de la misma población). Tales hipótesis se suelen llamar hipótesis nula y se denotan por Ho.
    Hipótesis Alternativa.
    Toda hipótesis que difiere de una dada se llamará una hipótesis alternativa. Por ejemplo: Si una hipótesis es p = 0,5, hipótesis alternativa podrían ser p = 0,7, p " 0,5 ó p > 0,5.
    Una hipótesis alternativa a la hipótesis nula se denotará por H1.
     
     
    ESTADISTICA INFERENCIAL
  • UNIVERSIDAD VERACRUZANA
    PROGRAMA DE ESTUDIO
     
     
     
     
    Referencia Bibliográfica
    http://www.aray1.com/docupdf/ji2.pdf
    Http://members.fortunecity.co/bucker4/estadística/pruebaji2mi.htm
     
    Introducción a la Bioestadística. Robert R. Sokal & F. James Rohlf.
    http://www.fcv.unlp.edu.ar/sitios- cátedras/2/material/Distribucion%20de%20Ji.pdf
     
    http://www.scribd.com/doc/6703611/Ji-Cuadrado
    http://www.naumkreiman.com.ar/test_ji_cuadrado.html
    http://www.monografias.com/trabajos27/hipotesis/hipotesis.shtml
    http://www.unmsm.edu.pe/educacion/postgrado/est_inf_aplicada.pdf
    http://www.gastrocancerprev.com.mx/Documentos/MetodoINV/1%20_6_.pdf
    http://www.fcv.unlp.edu.ar/sitios-catedras/2/material/Distribucion%20de%20Ji.pdf
    http://www.eumed.net/libros/2006c/203/2r.htm
    http://webcache.googleusercontent.com/search?q=cache:KZxJxxMrsfYJ:www.fvet.edu.uy/fvestadis/teorico-chi2_08.ppt+supuestos+de+chi-+cuadrada&cd=1&hl=es&ct=clnk&gl=mx
     
    http://www.raydesign.com.mx/psicoparaest/index.php?option=com_content&view=article&id=235:ji-bartlett&catid=52:pruebaspara&Itemid=6
     
    ESTADISTICA INFERENCIAL