Introduction to the Immune system: Lectures 1 and 2 Hugh Brady [email_address] Recommended textbook: Janeway’s Immunobiolo...
Why study immunology? <ul><li>Several reasons, most important in terms of numbers: </li></ul><ul><li>Infectious diseases a...
 
 
 
 
 
<ul><li>Do pathogens “want” to kill us? Does the </li></ul><ul><li>immune system (usually) “win” the fight  </li></ul><ul><...
<ul><li>Virulence and evolutionary fitness </li></ul><ul><li>Multiple theories: </li></ul><ul><li>Virulence (damage to hos...
The role of the immune system <ul><li>To protect us from infection: </li></ul><ul><li>Viruses; 20-400nm  (obligate intrace...
 
Apart from infectious diseases, why else study immunology? <ul><li>Autoimmune disease –  eg  multiple sclerosis, rheumatoi...
The immune system <ul><li>Physical barriers </li></ul><ul><li>Cells </li></ul><ul><li>Soluble effector proteins  </li></ul...
Cells of the immune system
 
 
 
 
 
 
 
Lymphocytes are mostly small and inactive cells
 
 
 
 
 
An infection and the response to it can be divided into a series of stages
Innate immunity Many barriers prevent pathogens from crossing epithelia and colonizing tissues
Time frame for different stages of immune response
The innate immune response <ul><li>Mediated (initiated) by phagocytes, NK cells and soluble proteins </li></ul><ul><li>Pha...
<ul><li>The largest cells in the blood </li></ul><ul><li>Monocytes are the precursors to macrophages in the tissue </li></...
 
Macrophages are activated by pathogens and both engulf them and initiate inflammatory responses
Pattern recognition in innate immunity <ul><li>Microrganisms have repeating patterns of molecular structure on their surfa...
 
 
Phagocytes <ul><li>Most common leukocyte (white blood cell) in blood (up to 80%) </li></ul><ul><li>Distinctive lobed nucle...
The innate immune response <ul><li>Inflammatory response enhances phagocytosis through acute phase proteins </li></ul><ul>...
Complement system
Complement system <ul><li>Pre-formed protein cascade:  </li></ul><ul><li>Punches holes in pathogen membranes  </li></ul><u...
Innate immunity <ul><li>First line of defence against infection </li></ul><ul><li>Pre-existing or very rapid response (hrs...
 
Acquired / adaptive immunity <ul><li>Specific to a particular  antigen  – detected by specific receptors on T and B cells ...
B cells <ul><li>Produce antibodies </li></ul><ul><li>Sometimes called “humoral immunity” </li></ul>Proliferation  Differen...
T cells <ul><li>T cell receptor (TCR)  </li></ul><ul><li>only recognises foreign antigen as a peptide on an  MHC molecule ...
Pathogen Recognition:  T and B cell receptors <ul><li>T and B cells have receptors specific for only one antigen </li></ul...
T and B cell responses are initiated in secondary lymphoid organs - lymph nodes and spleen Haematopoiesis B cells Neutroph...
Primary and secondary immune responses
Smallpox - an immunology success story <ul><li>Evolution of smallpox lesions on proximal upper  </li></ul><ul><li>extremit...
<ul><li>1796  Exposure to cowpox protects against smallpox </li></ul>Jenner
Smallpox Vaccination well known in 16 th  century China
Smallpox is the only major human disease to have been eradicated.
 
The Adaptive Immune response <ul><li>Creates millions of different B and T cells for specific antibody-mediated and cell-m...
Antibody-mediated (humoral) immunity <ul><li>Directed against extracellular microorganisms  </li></ul><ul><li>and toxins <...
Cell-mediated immunity <ul><li>Directed against intracellular microorganisms  </li></ul><ul><ul><li>Phagocytic cells and n...
The nature of antigens <ul><li>Historically named as  anti body  gen erators </li></ul><ul><ul><li>Molecule which stimulat...
The nature of antigens <ul><li>Carbohydrates, nucleic acids and lipids are also potential antigens / immunogens </li></ul>...
Antigens are the molecules recognized by the immune response Epitopes are sites within antigens to which antigen receptors...
An antibody binds an antigen directly whereas a T-cell receptor binds a complex of antigen fragment and self molecule
The nature of antibodies <ul><li>Antibodies are glycoproteins </li></ul><ul><li>Exist as monomers, dimers or pentamers of ...
 
The nature of antibodies <ul><li>Also referred to as </li></ul><ul><ul><li>Immune globulins / Immunoglobulins (IG) </li></...
Classification of Antibodies (Immunoglobulins) <ul><li>Five (5) classes (isotypes) </li></ul><ul><li>IgA IgG IgM IgD IgE <...
B cells and antibody-mediated immunity <ul><li>B lymphocytes originate from stem cells in bone marrow </li></ul><ul><li>Ma...
1. Neutralisation <ul><li>Antibodies block the interaction of the virus with its receptor </li></ul>
2. Opsonisation <ul><li>Antibodies label the virus and it is now recognised by phagocytes </li></ul><ul><li>NB Abs can als...
3. Complement activation <ul><li>Membrane Attack Complex damage to the viral envelope,  </li></ul><ul><li>MAC contains act...
Activation of antibody producing cells by clonal selection <ul><li>B lymphocytes recognize intact pathogenic microorganism...
T and B cell responses are clonal <ul><li>Receptor diversity; </li></ul><ul><li>T and B cells have receptors specific for ...
 
 
 
 
Activation of antibody producing cells by clonal selection <ul><li>Proliferation of activated cells is followed by differe...
Primary and secondary immune responses
Primary and secondary antibody response <ul><li>Primary Response </li></ul><ul><ul><li>Following exposure to an antigen, t...
T cells and cell-mediated immunity <ul><li>T lymphocytes originate from stem cells in bone marrow followed by migration to...
T cells and cell-mediated immunity <ul><li>Antigen presenting cells (APCs) </li></ul><ul><ul><li>Ingest and process antige...
Pathogen Recognition:  T and B cell receptors <ul><li>T and B cells have receptors specific for only one antigen </li></ul...
How T-cells are made
Mechanism of host defence against intracellular infection by viruses
Mechanism of host defence against intracellular infection by  Bacterium
MHC class I molecules present antigen derived from proteins in the cytosol
Cytotoxic T cells <ul><li>CD8+ cells </li></ul><ul><li>Kill by releasing granzymes and perforin or  </li></ul><ul><li>by e...
MHC class II molecules present antigen originating in intracellular vesicles
 
Summary <ul><li>The immune system protects us against a huge variety of different pathogens </li></ul><ul><li>Innate immun...
Upcoming SlideShare
Loading in...5
×

Jimmy

2,897

Published on

Published in: Technology, Education
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,897
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
322
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide
  • Jimmy

    1. 1. Introduction to the Immune system: Lectures 1 and 2 Hugh Brady [email_address] Recommended textbook: Janeway’s Immunobiology (7 th Ed) 2008, Garland Science
    2. 2. Why study immunology? <ul><li>Several reasons, most important in terms of numbers: </li></ul><ul><li>Infectious diseases are a major burden worldwide </li></ul><ul><li>Major challenges are HIV/AIDS, TB and malaria </li></ul><ul><li>42 million people living with HIV and AIDS worldwide </li></ul><ul><li>Malaria causes more than 300 million acute illnesses and at least one million deaths annually </li></ul><ul><li>An estimated two million deaths resulted from tuberculosis in 2002 </li></ul><ul><li>We need new strategies or vaccines to prevent or treat infectious disease </li></ul>
    3. 8. <ul><li>Do pathogens “want” to kill us? Does the </li></ul><ul><li>immune system (usually) “win” the fight </li></ul><ul><li>with pathogens, enabling survival of the </li></ul><ul><li>host? </li></ul><ul><li>Or does the pathogen evolve to adapt to </li></ul><ul><li>the host, including the host immune </li></ul><ul><li>response, enabling it to more effectively </li></ul><ul><li>persist? </li></ul>
    4. 9. <ul><li>Virulence and evolutionary fitness </li></ul><ul><li>Multiple theories: </li></ul><ul><li>Virulence (damage to host) is detrimental to pathogen: a dead </li></ul><ul><li>host is less effective at transmission </li></ul><ul><li>Highly virulent pathogens are recently emerged and will </li></ul><ul><li>evolve towards lower pathogenicity </li></ul><ul><li>Virulence factors confer increased fitness to pathogen </li></ul><ul><li>Virulence may increase as pathogens evolve. Are both true? </li></ul><ul><li>Perhaps virulence increases to a limit, after which it is </li></ul><ul><li>counterproductive to the pathogen </li></ul><ul><li>Must also consider that immune response is often responsible for </li></ul><ul><li>host damage </li></ul>
    5. 10. The role of the immune system <ul><li>To protect us from infection: </li></ul><ul><li>Viruses; 20-400nm (obligate intracellular) </li></ul><ul><li>Bacteria; 1-5  m </li></ul><ul><li>Fungi; 2-20  m </li></ul><ul><li>Protozoan parasites; 1- 50  m </li></ul><ul><li>Metazoan parasites (worms) 3mm – 7m </li></ul>
    6. 12. Apart from infectious diseases, why else study immunology? <ul><li>Autoimmune disease – eg multiple sclerosis, rheumatoid arthritis </li></ul><ul><li>Allergy – Allergy and asthma prevalence increasing </li></ul><ul><li>300 million people suffer from asthma and >180 000 die annually </li></ul><ul><li>Asthma deaths are predicted to increase by almost 20% in the next 10 years </li></ul><ul><li>Unwanted responses – transplantation. </li></ul>
    7. 13. The immune system <ul><li>Physical barriers </li></ul><ul><li>Cells </li></ul><ul><li>Soluble effector proteins </li></ul><ul><li>– complement, antibodies </li></ul><ul><li>Cytokines – communication </li></ul>
    8. 14. Cells of the immune system
    9. 22. Lymphocytes are mostly small and inactive cells
    10. 28. An infection and the response to it can be divided into a series of stages
    11. 29. Innate immunity Many barriers prevent pathogens from crossing epithelia and colonizing tissues
    12. 30. Time frame for different stages of immune response
    13. 31. The innate immune response <ul><li>Mediated (initiated) by phagocytes, NK cells and soluble proteins </li></ul><ul><li>Phagocytes </li></ul><ul><ul><li>Cells specialized in the process of phagocytosis </li></ul></ul><ul><ul><ul><li>Macrophages </li></ul></ul></ul><ul><ul><ul><ul><li>Reside in tissues and recruit neutrophils </li></ul></ul></ul></ul><ul><ul><ul><li>Neutrophils </li></ul></ul></ul><ul><ul><ul><ul><li>Enter infected tissues in large numbers </li></ul></ul></ul></ul><ul><ul><li>Recognize common molecules of bacterial cell surface using a few surface receptors </li></ul></ul><ul><li>Phagocytosis </li></ul><ul><ul><li>Capture, engulfment and breakdown of bacterial pathogen </li></ul></ul>
    14. 32. <ul><li>The largest cells in the blood </li></ul><ul><li>Monocytes are the precursors to macrophages in the tissue </li></ul><ul><li>Can be tissue resident or recruited to sites of inflammation </li></ul><ul><li>Engulf and kill viruses and bacteria </li></ul><ul><li>Important for antigen presentation to T cells </li></ul>Monocyte / macrophage
    15. 34. Macrophages are activated by pathogens and both engulf them and initiate inflammatory responses
    16. 35. Pattern recognition in innate immunity <ul><li>Microrganisms have repeating patterns of molecular structure on their surface </li></ul><ul><ul><li>in cell walls of Gram-positive and Gram-negative bacteria </li></ul></ul><ul><ul><li>Peptidoglycan molecules </li></ul></ul><ul><ul><li>Other microbial elements with repetitive structure </li></ul></ul><ul><ul><li>Bacterial DNA with unmethylated CpG dinucleotide repeats </li></ul></ul><ul><li>The repetitive structures are known as pathogen-associated molecular patterns (PAMPs) and the receptors that recognise them as pattern recognition receptors (PRRs) </li></ul>
    17. 38. Phagocytes <ul><li>Most common leukocyte (white blood cell) in blood (up to 80%) </li></ul><ul><li>Distinctive lobed nucleus and intracellular granules </li></ul><ul><li>Highly motile, they respond rapidly to inflammatory stimuli by migrating out of the blood and into tissues in large numbers. </li></ul><ul><li>Recognise, engulf and kill viruses and bacteria </li></ul><ul><li>Short life span – about 24hrs </li></ul><ul><li>Dead neutrophils are a major constituent of pus! </li></ul>Neutrophils
    18. 39. The innate immune response <ul><li>Inflammatory response enhances phagocytosis through acute phase proteins </li></ul><ul><ul><li>Mannose-binding lectin (MBL) </li></ul></ul><ul><ul><ul><li>Binds to bacterial surface with particular spatial arrangement of mannose or fucose </li></ul></ul></ul><ul><ul><li>C-reactive protein (CRP) </li></ul></ul><ul><ul><ul><li>Binds to phosphorylcholine on bacterial surface </li></ul></ul></ul><ul><ul><li>Complement </li></ul></ul><ul><ul><ul><li>Set of proteins which bind to bacterial surface </li></ul></ul></ul><ul><li>Inflammatory response </li></ul><ul><ul><li>Accumulation of fluid and cells at infection site (swelling, redness, heat and pain) </li></ul></ul>
    19. 40. Complement system
    20. 41. Complement system <ul><li>Pre-formed protein cascade: </li></ul><ul><li>Punches holes in pathogen membranes </li></ul><ul><li>Alerts and recruits other components of immune system to danger </li></ul><ul><li>Coats pathogens for uptake by phagocytes: ‘ opsonisation’ </li></ul>
    21. 42. Innate immunity <ul><li>First line of defence against infection </li></ul><ul><li>Pre-existing or very rapid response (hrs) </li></ul><ul><li>Recognition of pathogens is based upon pattern recognition (PAMPs) using germline encoded receptors (PRRs) or proteins. </li></ul><ul><li>Non-adaptive </li></ul><ul><li>No memory </li></ul><ul><li>Evolutionarily early </li></ul>
    22. 44. Acquired / adaptive immunity <ul><li>Specific to a particular antigen – detected by specific receptors on T and B cells </li></ul><ul><li>Response improves with time </li></ul><ul><li>Results in MEMORY = </li></ul><ul><li>Protection against re-infection with the same pathogen </li></ul><ul><li>Evolutionarily late – only present in vertebrates </li></ul><ul><li>Involves T and B lymphocytes </li></ul>
    23. 45. B cells <ul><li>Produce antibodies </li></ul><ul><li>Sometimes called “humoral immunity” </li></ul>Proliferation Differentiation B cell receptors Long lived
    24. 46. T cells <ul><li>T cell receptor (TCR) </li></ul><ul><li>only recognises foreign antigen as a peptide on an MHC molecule presented by an antigen presenting cell (APC) </li></ul>
    25. 47. Pathogen Recognition: T and B cell receptors <ul><li>T and B cells have receptors specific for only one antigen </li></ul><ul><li>Genes for the antigen receptors are re-arranged in each cell – every cell is different </li></ul><ul><li>Gene rearrangement results in receptors that can recognise a huge variety of antigens (10 8 different specificities in a human at one time) </li></ul>
    26. 48. T and B cell responses are initiated in secondary lymphoid organs - lymph nodes and spleen Haematopoiesis B cells Neutrophils etc T cell development
    27. 49. Primary and secondary immune responses
    28. 50. Smallpox - an immunology success story <ul><li>Evolution of smallpox lesions on proximal upper </li></ul><ul><li>extremity on days 3, 5, and 7 of lesions </li></ul>
    29. 51. <ul><li>1796 Exposure to cowpox protects against smallpox </li></ul>Jenner
    30. 52. Smallpox Vaccination well known in 16 th century China
    31. 53. Smallpox is the only major human disease to have been eradicated.
    32. 55. The Adaptive Immune response <ul><li>Creates millions of different B and T cells for specific antibody-mediated and cell-mediated immunity </li></ul><ul><li>Antibody-Mediated Immunity (AMI) </li></ul><ul><ul><li>Involves B lymphocytes, plasma cells and antibodies </li></ul></ul><ul><ul><li>Humoral immunity </li></ul></ul><ul><ul><ul><li>Name derives from antibodies found in body fluids (humors - old medical term) </li></ul></ul></ul><ul><li>Cell-Mediated Immunity (CMI) </li></ul><ul><ul><li>Involves T lymphocytes, antigen-presenting cells and MHC (major histocompatibility complex) molecules </li></ul></ul><ul><ul><li>Cellular immunity </li></ul></ul>
    33. 56. Antibody-mediated (humoral) immunity <ul><li>Directed against extracellular microorganisms </li></ul><ul><li>and toxins </li></ul><ul><li>B-lymphocytes (B cells) </li></ul><ul><ul><li>Differentiate into plasma cells which produce antibodies </li></ul></ul><ul><ul><li>Function as antigen-presenting cells (APC’s) </li></ul></ul><ul><li>Classification of Antibodies (Immunoglobulins) </li></ul><ul><ul><li>Immunoglobulin M (IgM) </li></ul></ul><ul><ul><li>Immunoglobulin G (IgG) </li></ul></ul><ul><ul><li>Immunoglobulin A (IgA) </li></ul></ul><ul><ul><li>Immunoglobulin D (IgD) </li></ul></ul><ul><ul><li>Immunoglobulin E (IgE) </li></ul></ul>
    34. 57. Cell-mediated immunity <ul><li>Directed against intracellular microorganisms </li></ul><ul><ul><li>Phagocytic cells and nonphagocytic cells </li></ul></ul><ul><li>T-lymphocytes (T cells) </li></ul><ul><ul><li>Differentiate into effector cells following antigen presentation by antigen presenting cells (APC’s) </li></ul></ul><ul><ul><li>Activate B lymphocytes </li></ul></ul><ul><li>Functional types of T cells </li></ul><ul><ul><li>Helper (CD4 T cells) </li></ul></ul><ul><ul><ul><li>T H 1 and T H 2 cells </li></ul></ul></ul><ul><ul><li>Cytotoxic (CD8 T cells) </li></ul></ul><ul><ul><li>Regulatory (Suppressor) </li></ul></ul><ul><ul><ul><li>CD4 Tregs </li></ul></ul></ul><ul><ul><ul><li>CD8 Tregs </li></ul></ul></ul>
    35. 58. The nature of antigens <ul><li>Historically named as anti body gen erators </li></ul><ul><ul><li>Molecule which stimulates production of and binds specifically to an antibody </li></ul></ul><ul><li>Contemporary view distinguishes between </li></ul><ul><ul><li>Antigen </li></ul></ul><ul><ul><ul><li>Molecule which can bind to specific antibody but cannot elicit adaptive immune response </li></ul></ul></ul><ul><ul><li>Immunogen </li></ul></ul><ul><ul><ul><li>Molecule which can stimulate adaptive immune response </li></ul></ul></ul><ul><li>Best immunogens are proteins with MW > 10,000 </li></ul>
    36. 59. The nature of antigens <ul><li>Carbohydrates, nucleic acids and lipids are also potential antigens / immunogens </li></ul><ul><li>Hapten </li></ul><ul><ul><li>Small (low MW) molecule unable to elicit immune response </li></ul></ul><ul><ul><li>Combines with larger carrier molecule which together function as immunogen </li></ul></ul><ul><ul><li>Antibody may react independently with hapten following hapten/carrier adaptive immune response </li></ul></ul><ul><ul><li>Example </li></ul></ul><ul><ul><ul><li>Penicillin G (MW of 372) </li></ul></ul></ul><ul><ul><ul><li>Albumin (MW of 66,000) </li></ul></ul></ul>
    37. 60. Antigens are the molecules recognized by the immune response Epitopes are sites within antigens to which antigen receptors bind
    38. 61. An antibody binds an antigen directly whereas a T-cell receptor binds a complex of antigen fragment and self molecule
    39. 62. The nature of antibodies <ul><li>Antibodies are glycoproteins </li></ul><ul><li>Exist as monomers, dimers or pentamers of basic structure </li></ul><ul><li>Basic antibody structure has 4 polypeptide chains </li></ul><ul><ul><li>2 identical light chains </li></ul></ul><ul><ul><li>2 identical heavy chains </li></ul></ul><ul><li>Regions of heavy and light chains </li></ul><ul><ul><li>Variable </li></ul></ul><ul><ul><li>Constant </li></ul></ul>
    40. 64. The nature of antibodies <ul><li>Also referred to as </li></ul><ul><ul><li>Immune globulins / Immunoglobulins (IG) </li></ul></ul><ul><ul><li>Immune serum globulins (ISG) </li></ul></ul><ul><ul><li>Gamma globulins </li></ul></ul><ul><li>Contemporary immunology </li></ul><ul><ul><li>Antibody </li></ul></ul><ul><ul><ul><li>Secreted form of IG made by plasma cells </li></ul></ul></ul><ul><ul><li>Immunoglobulin </li></ul></ul><ul><ul><ul><li>Antigen binding molecules of B cells </li></ul></ul></ul><ul><ul><ul><ul><li>(B cell antigen receptors) </li></ul></ul></ul></ul>
    41. 65. Classification of Antibodies (Immunoglobulins) <ul><li>Five (5) classes (isotypes) </li></ul><ul><li>IgA IgG IgM IgD IgE </li></ul><ul><li>Based on structural differences in constant regions of heavy chains </li></ul><ul><li>Classes have specialized effector functions </li></ul><ul><li>High affinity IgG and IgA antibodies neutralize bacterial </li></ul><ul><li>toxins and can inhibit infectivity of viruses </li></ul><ul><li>IgE has specialized role activating Mast Cells </li></ul>
    42. 66. B cells and antibody-mediated immunity <ul><li>B lymphocytes originate from stem cells in bone marrow </li></ul><ul><li>Maturation takes place in bone marrow followed by migration to secondary lymphoid tissue </li></ul><ul><li>Antigen exposure in secondary lymphoid tissue </li></ul><ul><li>Following exposure to antigen, B lymphocytes differentiate into plasma cells and memory cells </li></ul><ul><li>Plasma cells produce antibodies of all IG classes </li></ul>
    43. 67. 1. Neutralisation <ul><li>Antibodies block the interaction of the virus with its receptor </li></ul>
    44. 68. 2. Opsonisation <ul><li>Antibodies label the virus and it is now recognised by phagocytes </li></ul><ul><li>NB Abs can also label the whole virally infected cell for phagocytosis </li></ul>
    45. 69. 3. Complement activation <ul><li>Membrane Attack Complex damage to the viral envelope, </li></ul><ul><li>MAC contains activated complement proteins, forms pore </li></ul>
    46. 70. Activation of antibody producing cells by clonal selection <ul><li>B lymphocytes recognize intact pathogenic microorganisms and toxins </li></ul><ul><li>B lymphocytes possess specific surface receptors for recognition of specific antigen </li></ul><ul><ul><li>IgM and IgD </li></ul></ul><ul><li>Binding of specific antigen results in proliferation of a clonal population of cells </li></ul><ul><li>Antigen determines clonal proliferation </li></ul>
    47. 71. T and B cell responses are clonal <ul><li>Receptor diversity; </li></ul><ul><li>T and B cells have receptors specific for only one antigen </li></ul><ul><li>Each cell is unique </li></ul><ul><li>Specific antigen recognition </li></ul>Precursors Clonal Proliferation Memory cells ‘ Effector cells’
    48. 76. Activation of antibody producing cells by clonal selection <ul><li>Proliferation of activated cells is followed by differentiation into </li></ul><ul><ul><li>Plasma cells </li></ul></ul><ul><ul><ul><li>Life span of </li></ul></ul></ul><ul><ul><ul><ul><li>4 to 5 days </li></ul></ul></ul></ul><ul><ul><ul><ul><li>1 to 2 months </li></ul></ul></ul></ul><ul><ul><ul><li>Produce 2,000 antibody molecules / second </li></ul></ul></ul><ul><ul><li>Memory cells </li></ul></ul><ul><ul><ul><li>Life span of years to decades </li></ul></ul></ul><ul><ul><ul><li>Differentiate into plasma cells following stimulation by same antigen </li></ul></ul></ul>
    49. 77. Primary and secondary immune responses
    50. 78. Primary and secondary antibody response <ul><li>Primary Response </li></ul><ul><ul><li>Following exposure to an antigen, there is a slow rise in IgM followed by a slow rise in IgG </li></ul></ul><ul><li>Secondary Response </li></ul><ul><ul><li>Following exposure to previously encountered antigen, there is a rapid rise in IgG and slow or no rise in IgM </li></ul></ul><ul><ul><ul><li>Memory response </li></ul></ul></ul>
    51. 79. T cells and cell-mediated immunity <ul><li>T lymphocytes originate from stem cells in bone marrow followed by migration to thymus gland </li></ul><ul><li>Maturation takes place in thymus gland followed by migration to secondary lymphoid tissue </li></ul><ul><li>T lymphocytes respond to antigens on the surface of antigen presenting cells (APC’s) </li></ul><ul><li>Antigen presenting cells (APC’s) </li></ul><ul><ul><li>Macrophages </li></ul></ul><ul><ul><li>Dendritic cells </li></ul></ul><ul><ul><li>B lymphocytes </li></ul></ul>
    52. 80. T cells and cell-mediated immunity <ul><li>Antigen presenting cells (APCs) </li></ul><ul><ul><li>Ingest and process antigens then display fragments (short peptides) on their surface in association with molecules of major histocompatibility complex (MHC) </li></ul></ul><ul><li>Major histocompatibility (MHC) molecules </li></ul><ul><ul><li>MHC class I molecules </li></ul></ul><ul><ul><ul><li>Present antigens to CD8 T cells </li></ul></ul></ul><ul><ul><li>MHC class II molecules </li></ul></ul><ul><ul><ul><li>Present antigens to CD4 T cells </li></ul></ul></ul><ul><li>T cells which encounter antigen differentiate into effector T cells </li></ul>
    53. 81. Pathogen Recognition: T and B cell receptors <ul><li>T and B cells have receptors specific for only one antigen </li></ul><ul><li>Genes for the antigen receptors are re-arranged in each cell – every cell is different </li></ul><ul><li>Gene rearrangement results in receptors that can recognise a huge variety of antigens (10 8 different specificities in a human at one time) </li></ul>
    54. 82. How T-cells are made
    55. 83. Mechanism of host defence against intracellular infection by viruses
    56. 84. Mechanism of host defence against intracellular infection by Bacterium
    57. 85. MHC class I molecules present antigen derived from proteins in the cytosol
    58. 86. Cytotoxic T cells <ul><li>CD8+ cells </li></ul><ul><li>Kill by releasing granzymes and perforin or </li></ul><ul><li>by engagement of Fas on target cells by Fas Ligand </li></ul><ul><li>Granule contents cause apoptosis in the target cell </li></ul>
    59. 87. MHC class II molecules present antigen originating in intracellular vesicles
    60. 89. Summary <ul><li>The immune system protects us against a huge variety of different pathogens </li></ul><ul><li>Innate immunity is our first line of defence </li></ul><ul><li>Physical barriers </li></ul><ul><li>Complement </li></ul><ul><li>Phagocytes </li></ul><ul><li>Acquired / Adaptive immunity </li></ul><ul><li>Involves T and B lymphocytes </li></ul><ul><li>Responses are antigen specific and clonal </li></ul><ul><li>Memory responses </li></ul><ul><li>Secondary responses are faster and better (more and higher affinity antibody) than primary responses – the basis of vaccination </li></ul>
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×