metales ferrosos

21,914 views
21,567 views

Published on

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
21,914
On SlideShare
0
From Embeds
0
Number of Embeds
265
Actions
Shares
0
Downloads
107
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

metales ferrosos

  1. 1. Índice Clasificación del metal. Situación en la tabla periódica Ficha identificativa. Características. Aplicaciones Aleaciones Obtención Curiosidades
  2. 2. Tabla periódica
  3. 3. Ficha identificativa Símbolo: Fe Nº atómico: 26 Masa atómica: 55,845 u Valencias: +2, +3 Punto de fusión: 3 K Punto de ebullición: 12 K Densidad: 7874 kg/m3,
  4. 4. Características Es un metal maleable, de color gris plateado y presenta propiedades magnéticas; es ferromagnético a temperatura ambiente y presión atmosférica. Este metal de transición es el cuarto elemento más abundante en la corteza terrestre, representando un 5% y, entre los metales. Igualmente es uno de los elementos más importantes del Universo, y el núcleo de la Tierra está formado principalmente por hierro y níquel, generando al moverse un campo magnético. Es el elemento más pesado que se produce exotérmicamente por fusión, y el más ligero. Presenta diferentes formas estructurales dependiendo de la temperatura y presión. El hierro puro tiene una dureza que oscila entre 4 y 5. Es blando, maleable y dúctil. Se magnetiza fácilmente a temperatura ordinaria
  5. 5. Aplicaciones. El hierro es el metal más usado, con el 95% en peso de la producción mundial de metal. El hierro puro no tiene demasiadas aplicaciones, salvo excepciones para utilizar su potencial magnético. El hierro tiene su gran aplicación para formar los productos siderúrgicos. El acero es indispensable debido a su bajo precio y tenacidad, especialmente en automóviles, barcos y componentes estructurales de edificios. Las aleaciones férreas presentan una gran variedad de propiedades mecánicas dependiendo de su composición o el tratamiento que se haya llevado a cabo
  6. 6. Aleaciones Las Aleaciones férreas son aquéllas en las que el principal componente es el hierro. Gran interés como material para la construcción de diversos equipos y su producción es muy elevada, debido a: Abundancia de hierro en la corteza terrestre. Técnicas de fabricación de los aceros es económica. Alta versatilidad.
  7. 7. Acero El acero es una aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2,0% de carbono dan lugar a las fundiciones, aleaciones que al ser quebradizas y no poderse forjar a diferencia de los aceros, se moldean. Los aceros al carbono en los que este último es el único aleante o los demás presentes lo están en cantidades muy pequeñas pues de hecho existen multitud de tipos de acero con composiciones muy diversas que reciben denominaciones específicas en virtud ya sea de los elementos que predominan en su composición (aceros al silicio), de su susceptibilidad a ciertos tratamientos (aceros de cementación), de alguna característica potenciada (aceros inoxidables) e incluso en función de su uso (aceros estructurales).
  8. 8. Por la variedad ya apuntada y por su disponibilidad sus dos elementos primordiales abundan en la naturaleza facilitando su producción en cantidades industriales. Los aceros son las aleaciones más utilizadas en la construcción de maquinaria, herramientas, edificios y obras públicas, habiendo contribuido al alto nivel de desarrollo tecnológico de las sociedades industrializadas. Sin embargo, en ciertos sectores, como la construcción aeronáutica, el acero apenas se utiliza debido a que es un material muy denso, casi tres veces más denso que el aluminio. Fabricación del acero: http://www.youtube.com/watch?v=9M3T_jnRd6Y&feature=related
  9. 9. Hierro dulce Hierro libre de impurezas, es el más puro que se encuentra en la naturaleza. Es bastante blando por lo que se trabaja con facilidad, se utiliza preferentemente en la fabricación de electroimanes, sin embargo la mayor parte del uso del hierro se realiza en formas que han pasado por un tratamiento previo, como en el caso del hierro colado o la fundición.
  10. 10. Fundiciones Las fundiciones de hierro son aleaciones de hierro carbono del 2 al 5%, cantidades de silicio del 2 al 4%, del manganeso hasta 1%, bajo azufre y bajo fósforo. Se caracterizan por que se pueden vaciar del horno cubilote para obtener piezas de muy diferente tamaño y complejidad pero no pueden ser sometidas a deformación plástica, no son dúctiles ni maleables y poco soldables pero sí maquinables, relativamente duras y resistentes a la corrosión y al desgaste. Las fundiciones tienen innumerables usos y sus ventajas más importantes son: - Son más fáciles de maquinar que los aceros. - Se pueden fabricar piezas de diferente tamaño y complejidad. - En su fabricación no se necesitan equipos ni hornos muy costosos. - Absorben las vibraciones mecánicas y actúan como autolubricantes. - Son resistentes al choque térmico, a la corrosión y de buena resistencia al desgaste.
  11. 11. Obtención Se puede obtener hierro a partir de los óxidos con más o menos impurezas. Muchos de los minerales de hierro son óxidos, y los que no se pueden oxidar para obtener los correspondientes óxidos. La reducción de los óxidos para obtener hierro se lleva a cabo en un horno denominado comúnmente alto horno (también, horno alto). En él se añaden los minerales de hierro en presencia de coque y carbonato de calcio, CaCO3, que actúa como escorificante.
  12. 12. Los gases sufren una serie de reacciones; el coque puede reaccionar con el oxígeno para formar dióxido de carbono: – C + O2 → CO2 A su vez el dióxido de carbono puede reducirse para dar monóxido de carbono: – CO2 + C → 2CO Aunque también se puede dar el proceso contrario al oxidarse el monóxido con oxígeno para volver a dar dióxido de carbono: – 2CO + O2 → 2CO2 El proceso de oxidación de coque con oxígeno libera energía y se utiliza para calentar (llegándose hasta unos 1900 °C en la parte inferior del horno). En primer lugar los óxidos de hierro pueden reducirse, parcial o totalmente, con el monóxido de carbono, CO; por ejemplo: – Fe3O4 + CO → 3FeO + CO2 – FeO + CO → Fe + CO2
  13. 13. Después, conforme se baja en el horno y la temperatura aumenta, reaccionan con el coque (carbono en su mayor parte), reduciéndose los óxidos. Por ejemplo: – Fe3O4 + C → 3FeO + CO El carbonato de calcio (caliza) se descompone: – CaCO3 → CaO + CO2 Y el dióxido de carbono es reducido con el coque a monóxido de carbono como se ha visto antes. Más abajo se producen procesos de carburación: – 3Fe + 2CO → Fe3C + CO2 Finalmente se produce la combustión y desulfuración (eliminación de azufre) mediante la entrada de aire. Y por último se separan dos fracciones: la escoria y el arrabio: hierro fundido, que es la materia prima que luego se emplea en la industria. El arrabio suele contener bastantes impurezas no deseables, y es necesario someterlo a un proceso de afino en hornos llamados convertidores. En 2000 los cinco mayores productores de hierro eran China, Brasil, Australia, Rusia e India, con el 70% de la producción mundial
  14. 14. Curiosidades El hierro en exceso es tóxico. El hierro reacciona con peróxido y produce radicales libres; la reacción más importante es: – Fe2+ + H2O2 → Fe3+ + OH- + OH• Cuando el hierro se encuentra dentro de unos niveles normales, los mecanismos antioxidantes del organismo pueden controlar este proceso. La dosis letal de hierro en un niño de 2 años es de unos 3 g. 1 g puede provocar un envenenamiento importante. El hierro en exceso se acumula en el hígado y provoca daños en este órgano.
  15. 15. Preguntas a los compañeros Cita 5 características del hierro Cita alguna aplicación. Cita alguna aleación. Símbolo del hierro. Cita alguna curiosidad. Obtención. Explícala extensamente. Explica lo que has podido observar en el video.
  16. 16. Bibliografía www.Google.es Imágenes www.google.es www.wikipedia.com www.youtube.com

×