PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO EQUAÇÃO É TODA SENTENÇA MATEMÁTICA ABERTA QUE EXPRIME UMA RELAÇÃO DE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU AS EQUAÇÕES DO PRIMEIRO GRAU SÃO AQUELAS QUE PODEM SER RE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO 2x + 8 = 0 5x – 4 = 6x + 8 3a – b – c = 0
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS NÃO SÃO EQUAÇÕES 4 + 8 = 7 + 5 (NÃO É UMA SENTENÇA ABERTA) x – 5 < 3 (NÃO É ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU CONSIDERANDO AS DUAS IGUALDADES ABAIXO: 2 + 3 = 5 2 + 1 =...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU CONSIDERANDO A IGUALDADE ABAIXO: 2 + x = 5 DIZEMOS QUE A ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU A LETRA “ x ”  É A VARIÁVEL DA EQUAÇÃO. O NÚMERO 3 É A RA...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 2x + 1 = 7 3 É A ÚNICA RAIZ, ENTÃO S = {3} 3x – 5 = -2 1 É A ÚNICA ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU CONSIDERE A EQUAÇÃO  2x – 8 = 3x – 10 A LETRA “ x ”  É A ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU QUALQUER PARCELA, DO 1º OU DO 2º MEMBRO, É UM TERMO DA EQ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS RESOLVER UMA EQUAÇÃO É DETERMINAR TODAS AS RAÍZES DA EQUAÇÃO QUE PERTENCEM A...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PARA RESOLVER A EQUAÇÃO x² = 4 em N A ÚNICA RAÍZ NATURAL DA EQUAÇÃO É +2, AS...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS NA RESOLUÇÃO DAS EQUAÇÕES, PODEMOS NOS VALER DE ALGUMAS OPERAÇÕES E TRANSFOR...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS OBSERVEMOS A EQUAÇÃO: x + 2 = 3 SUBTRAINDO 2 NOS DOIS MEMBROS DA IGUALDADE, ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS P2) QUANDO MULTIPLICAMOS OU DIVIDIMOS OS DOIS MEMBROS DE UMA IGUALDADE POR U...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS OBSERVEMOS A EQUAÇÃO: -2x = 6 DIVIDINDO POR -2 OS DOIS MEMBROS DA IGUALDADE,...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO 3x – 5 = 0 (a = 3 E b = -5) PARA RESOLVER UMA EQUAÇÃO DO 1º GRAU, DE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO 3x – 5 = 2x + 6 3x – 2x = 6 + 5 x = 11 S = {11}
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO 2(x + 3) + 3(x - 1) = 7(x + 2) 2x + 6 + 3x – 3 = 7x + 14 2x + 3x –...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO EM UM SÍTIO, ENTRE OVELHAS E CABRITOS, HÁ 200 ANIMAIS. SE O NÚMERO...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO EM UM QUINTAL EXISTEM PORCOS, AVETRUZ E GALINHAS, FAZENDO UM TOTAL...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO 2x + 4y = 180 2(60 – y) + 4y = 180 120 - 2y + 4y = 180 -2y + 4y = ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO A SOMA DE DOIS NÚMEROS DADOS É 8 E A DIFERENÇA ENTRE ESTES MESMO N...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x – y = 4 6 – y = 4 -y = 4 – 6 -y = -2 (x-1) y = 2 S = {6,2}
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU DENOMINA-SE EQUAÇÃO DO 2º GRAU COM UMA VARIÁVEL TODA E QU...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU DESTA FORMA, SÃO EQUAÇÕES DO SEGUNDO GRAU: 3x² - 4x + 2 =...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU DESTA FORMA, SÃO EQUAÇÕES DO SEGUNDO GRAU: y² + 10y - 15 ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>COEFICIENTES DA EQUAÇÃO DO 2º GRAU </li></ul><ul><li>OS NÚMEROS REAI...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU O QUE SÃO EQUAÇÕES COMPLETAS E EQUAÇÕES INCOMPLETAS. COMO...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU QUANDO “ b ” E “ c ” SÃO DIFERENTES DE ZERO, A EQUAÇÃO SE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU QUANDO ( b = 0 ), OU ( c = 0 ) OU ( b = c = 0 ), A EQUAÇÃ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>COMO RESOLVER EQUAÇÕES DO 2º GRAU INCOMPLETAS </li></ul><ul><li>PARA...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU INCOMPLETAS A EQUAÇÃO É DA FORMA ax² + bx ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS y² - 10x = 0 COLOCANDO O FATOR “ y ” EM EVIDÊNCIA, TEMOS: y.(y + 10...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU INCOMPLETAS A EQUAÇÃO É DA FORMA ax² + c =...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 4x² - 36 = 0 CALCULANDO O TERMO INDEPENDENTE E TRANSPONDO O TERMO, ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO IDENTIFIQUE OS COEFICIENTES DE CADA EQUAÇÃO E DIGA SE ELA É COMPLE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO IDENTIFIQUE OS COEFICIENTES DE CADA EQUAÇÃO E DIGA SE ELA É COMPLE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO IDENTIFIQUE OS COEFICIENTES DE CADA EQUAÇÃO E DIGA SE ELA É COMPLE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO CALCULE A EQUAÇÃO ABAIXO. y² + 15y = 0 y.(y + 15) = 0 y = 0 y + 15...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU COMPLETAS INICIALMENTE OBSERVAMOS A FÓRMUL...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU COMPLETAS A EXPRESSÃO: AONDE O SÍMBOLO APO...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU COMPLETAS A FÓRMULA DE BÁSCARA:
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O POLINÔMIO INDICADO E QUE SE ENCONTRA DENTRO DA RAÍZ DA  FÓRMULA  É C...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA CONFORME O DELTA SEJA POSITIVO, NEGATIVO OU NULO, EXISTEM TRÊS CASOS P...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O DISCRIMINANTE É POSITIVO: A EQUAÇÃO TERÁ DUAS RAÍZES REAIS DIFERENTE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O DISCRIMINANTE É NULO: A EQUAÇÃO TERÁ DUAS RAÍZES REAIS E IGUAIS. NES...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O DISCRIMINANTE É NEGATIVO: NESTE CASO O VALOR DA RAIZ QUADRADA DE DEL...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x² - 6x + 5 = 0 a = 1 b = -6 c = 5 DISCRIMINANTE: = (-6)² - 4.(1)....
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x =  -(-6) +- √16   =  6 +- 4                2.(1)           2 x’ ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x² = 5(2x – 5) x² = 10x – 25 x² -10x + 25 = 0 a = 1 b = -10 c = 25
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO DISCRIMINANTE: = (-10)² - 4.(1).(25) = 100 – 100 = 0 0 = 0 (DUAS R...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO Fórmula resolutiva:   x = x’ = x’’ =  -b                      2a  ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x² + 3x + 8 = 0 a = 1 b = 3 c = 8
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>EXERCÍCIO </li></ul><ul><li>DISCRIMINANTE: </li></ul><ul><li>= (3)² ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU INEQUAÇÃO DO 1º GRAU EM SUA DEFINIÇÃO MAIS SIMPLES E CO...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 2x – 8 > 0 3x – 9 < 0 4x + 9 >= 0 5x + 1/3 <= 0
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU O QUE REPRESENTA OS SINAIS DAS INEQUAÇÕES.
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU OBSERVANDO AS CONDIÇÕES DE VIDA DA POPULAÇÃO DO BRASIL,...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU HABITAÇÃO: MUITOS BRASILEIROS TÊM CASAS BOAS EM BAIRROS...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU NAS INEQUAÇÕES DO PRIMEIRO GRAU QUE ESTEJAM...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU DETERMINE TODOS OS POSSÍVEIS NÚMEROS INTEIR...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU APÓS FAZER OS DEVIDOS CÁLCULOS DA INEQUAÇÃO...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 2 – 4x >= x + 17
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 3(x + 4) < 4(2 – x)
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS QUAIS OS VALORES DE “x” QUE TORNAM A INEQUAÇÃO -2x + 4 > 0 VERDADEI...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS O NÚMERO 2 NÃO É A SOLUÇÃO DA INEQUAÇÃO DADA, MAIS SIM QUALQUER VAL...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>PRINCÍPIOS PARA SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU </li></ul><ul><li>A...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PRINCÍPIOS PARA SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU É FÁCIL PERCEBER QUE A RESO...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO CONSIDERANDO COMO UNIVERSO O CONJUNTO DOS NÚMEROS NATURAIS, DETERMIN...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO SE, O UNIVERSO DO EXERCÍCIO ANTERIOR FOSSE O CONJUNTO DOS NÚMEROS RE...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU QUANDO UMA EQUAÇÃO DO 1º GRAU É RESOLVI...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU 5 > 3 RECURSO: 5 > 3 (SOMAR O VALOR 2) ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU 5 > 3 RECURSO: 5 > 3 (SUBTRARIA O VALOR...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU 5 > 2 RECURSO: 5 > 2 (MULTIPLICAR PELO ...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU PORTANTO, É PRECISO TER O MÁXIMO DE CUI...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU DADAS AS FUNÇÕES f(x) E g(x), CHAMAMOS DE INEQU...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU A FORMA DA INEQUAÇÃO-PRODUTO PODE SER ESTENDIDA...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU PARA RESOLVERMOS INEQUAÇÕES-PRODUTO, PRIMEIRO E...
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU COMO a = 1 > 0, VEM:
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS g(x) = 0 2x – 3 = 0 2x = 3 x = 3/2 COMO a = 2 > 0, VEM:
PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS QUADRO DO PRODUTO LOGO: S = {x   є  R/ x <= 1 ou x >= 3/2}
Upcoming SlideShare
Loading in...5
×

Aula 6 MAT

5,753

Published on

Published in: Travel
1 Comment
0 Likes
Statistics
Notes
  • Penso que haja um equívoco na questão das ovelhas e cabritos. Vamos pensar...diz-se que o número de ovelhas(x) é um terço do número de cabritos(y), ou seja, x=y/3. Atribuindo x=y/3 na 1ª equação (x+y=200) teremos y=150, substituindo o valor de y em uma das equações, teremos x=50. ou seja, as ovelhas (x=50) são 1/3 do número de cabritos (y=150). 50 é 1/3 de 150.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Views
Total Views
5,753
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
125
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide

Aula 6 MAT

  1. 1. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO EQUAÇÃO É TODA SENTENÇA MATEMÁTICA ABERTA QUE EXPRIME UMA RELAÇÃO DE IGUALDADE. A PALAVRA EQUAÇÃO TEM O PREFIXO “ EQUA ”, QUE EM LATIM QUER DIZER “ IGUAL ”.
  2. 2. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU AS EQUAÇÕES DO PRIMEIRO GRAU SÃO AQUELAS QUE PODEM SER REPRESENTADAS SOB A FORMA ax + b = 0 , EM QUE “ a ” E “ b ” SÃO CONSTANTES REAIS, COM “ a ” DIFERENTE DE 0 , E “ x ” É A VARIÁVEL.
  3. 3. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO 2x + 8 = 0 5x – 4 = 6x + 8 3a – b – c = 0
  4. 4. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS NÃO SÃO EQUAÇÕES 4 + 8 = 7 + 5 (NÃO É UMA SENTENÇA ABERTA) x – 5 < 3 (NÃO É IGUALDADE) 5 ≠ - 2 (NÃO É SENTENÇA ABERTA, NEM IGUALDADE)
  5. 5. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU CONSIDERANDO AS DUAS IGUALDADES ABAIXO: 2 + 3 = 5 2 + 1 = 5 DIZEMOS QUE AS IGUALDADES SÃO SENTENÇAS MATEMÁTICAS FECHADAS , POIS SÃO DEFINITIVAMENTE FALSAS OU DEFINITIVAMENTE VERDADEIRAS. NO CASO, A PRIMEIRA É SEMPRE VERDADEIRA E A SEGUNDA É SEMPRE FALSA.
  6. 6. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU CONSIDERANDO A IGUALDADE ABAIXO: 2 + x = 5 DIZEMOS QUE A IGUALDADE É UMA SENTENÇA MATEMÁTICA ABERTA , POIS PODE SER VERDADEIRA OU FALSA, DEPENDENDO DO VALOR ATRIBUÍDO A LETRA “ x ”. NO CASO, É VERDADEIRA QUANDO ATRIBUÍMOS A “ x ” O VALOR 3 E FALSA QUANDO O VALOR ATRIBUÍDO A “ x ” É DIFERENTE DE 3. SENTENÇAS MATEMÁTICAS DESSE TIPO SÃO CHAMADAS DE EQUAÇÕES.
  7. 7. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU A LETRA “ x ” É A VARIÁVEL DA EQUAÇÃO. O NÚMERO 3 É A RAIZ OU SOLUÇÃO DA EQUAÇÃO. O CONJUNTO SOLUÇÃO DA EQUAÇÃO, TAMBÉM CHAMADO DE CONJUNTO VERDADE É S = {3}.
  8. 8. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 2x + 1 = 7 3 É A ÚNICA RAIZ, ENTÃO S = {3} 3x – 5 = -2 1 É A ÚNICA RAIZ, ENTÃO S = {1}
  9. 9. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU CONSIDERE A EQUAÇÃO 2x – 8 = 3x – 10 A LETRA “ x ” É A INCÓGNITA DA EQUAÇÃO. A PALAVRA “ INCÓGNITA ” SIGNIFICA “ DESCONHECIDA ”. NA EQUAÇÃO ACIMA A INCÓGNITA É “ x ” E TUDO QUE ANTECEDE O SINAL DA IGUALDADE DENOMINA-SE 1º MEMBRO , E O QUE SUCEDE, 2º MEMBRO .
  10. 10. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 1º GRAU QUALQUER PARCELA, DO 1º OU DO 2º MEMBRO, É UM TERMO DA EQUAÇÃO.
  11. 11. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS RESOLVER UMA EQUAÇÃO É DETERMINAR TODAS AS RAÍZES DA EQUAÇÃO QUE PERTENCEM A UM CONJUNTO PREVIAMENTE ESTABELECIDO, CHAMADO CONJUNTO UNIVERSO. PARA RESOLVER A EQUAÇÃO x² = 4 em R AS RAÍZES REAIS DA EQUAÇÃO SÃO -2 E +2, ASSIM: S = {-2, +2}
  12. 12. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PARA RESOLVER A EQUAÇÃO x² = 4 em N A ÚNICA RAÍZ NATURAL DA EQUAÇÃO É +2, ASSIM: S = {+2}
  13. 13. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS NA RESOLUÇÃO DAS EQUAÇÕES, PODEMOS NOS VALER DE ALGUMAS OPERAÇÕES E TRANSFORMÁ-LAS EM EQUA- ÇÕES EQUIVALENTES, ISTO É, QUE APRESENTAM O MESMO CONJUNTO SOLUÇÃO, NO MESMO UNIVERSO. VEJAMOS ALGUMAS DESTAS PROPRIEDADES: P1) QUANDO ADICIONAMOS OU SUBTRAÍMOS UM MESMO NÚMERO AOS DOIS MEMBROS DE UMA IGUALDADE, ESTA PERMANECE VERDADEIRA.
  14. 14. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS OBSERVEMOS A EQUAÇÃO: x + 2 = 3 SUBTRAINDO 2 NOS DOIS MEMBROS DA IGUALDADE, TEMOS: x + 2 = 3 => x + 2 – 2 = 3 – 2 ASSIM: x + 2 = 3 => x = 3 – 2 x + 2 = 3 => x = 1
  15. 15. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS P2) QUANDO MULTIPLICAMOS OU DIVIDIMOS OS DOIS MEMBROS DE UMA IGUALDADE POR UM NÚMERO DIFERENTE DE ZERO, A IGUALDADE PERMANECE VERDADEIRA.
  16. 16. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS OBSERVEMOS A EQUAÇÃO: -2x = 6 DIVIDINDO POR -2 OS DOIS MEMBROS DA IGUALDADE, TEMOS: -2x = 6 => -2x/-2 = 6/-2 ASSIM: -2x = 6 => x = – 3
  17. 17. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO 3x – 5 = 0 (a = 3 E b = -5) PARA RESOLVER UMA EQUAÇÃO DO 1º GRAU, DEVEMOS ISOLAR A INCÓGNITA EM UM DOS MEMBROS DA IGUALDADE, USANDO AS PROPRIEDADES P1 E P2 DO ITEM ANTERIOR 3x – 5 = 0 3x – 5 + 5 = 0 + 5 3x = 5 3x/3 = 5/3 x = 5/3
  18. 18. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO 3x – 5 = 2x + 6 3x – 2x = 6 + 5 x = 11 S = {11}
  19. 19. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO 2(x + 3) + 3(x - 1) = 7(x + 2) 2x + 6 + 3x – 3 = 7x + 14 2x + 3x – 7x = 14 + 3 – 6 -2x = 11 x = -11/2 S = {-11/2}
  20. 20. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO EM UM SÍTIO, ENTRE OVELHAS E CABRITOS, HÁ 200 ANIMAIS. SE O NÚMERO DE OVELHAS É IGUAL A 1/3 DO NÚMERO DE CABRITOS, DETERMINE QUANTAS SÃO O NÚMERO DE OVELHAS E QUANTOS SÃO O NÚMERO DE CABRITOS. x = OVELHAS y = CABRITOS x = 1/3.200 = 67 x + y = 200 67 + y = 200 y = 200 – 67 y = 133 S = {67, 133}
  21. 21. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO EM UM QUINTAL EXISTEM PORCOS, AVETRUZ E GALINHAS, FAZENDO UM TOTAL DE 60 CABEÇAS E 180 PÉS. x = ANIMAIS DE DOIS PÉS (AVESTRUZ E GALINHAS) y = ANIMAIS DE QUATRO PÉS (PORCOS) x + y = 60 => x = 60 – y ASSIM, ANIMAIS DE DOIS PÉS 2x, E QUATRO PÉS 4y, LOGO SÃO OBSERVADOS: 2x + 4y = 180
  22. 22. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO 2x + 4y = 180 2(60 – y) + 4y = 180 120 - 2y + 4y = 180 -2y + 4y = 180 - 120 2y = 60 y = 30 x + y = 60 x + 30 = 60 x = 60 – 30 x = 30 LOGO, S = {30, 30}
  23. 23. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO A SOMA DE DOIS NÚMEROS DADOS É 8 E A DIFERENÇA ENTRE ESTES MESMO NÚMEROS É IGUAL A 4. QUAIS SÃO OS NÚMEROS? x + y = 8 x - y = 4 x + x + y – y = 8 + 4 2x = 12 x = 12/2 = 6
  24. 24. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x – y = 4 6 – y = 4 -y = 4 – 6 -y = -2 (x-1) y = 2 S = {6,2}
  25. 25. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU DENOMINA-SE EQUAÇÃO DO 2º GRAU COM UMA VARIÁVEL TODA E QUALQUER EQUAÇÃO QUE ESTEJA NA FORMA: ONDE a, b E c PERTENCEM AOS REAIS “R”, COM a ≠ 0.
  26. 26. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU DESTA FORMA, SÃO EQUAÇÕES DO SEGUNDO GRAU: 3x² - 4x + 2 = 0 ONDE: a = 3 b = -4 c = 2
  27. 27. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU DESTA FORMA, SÃO EQUAÇÕES DO SEGUNDO GRAU: y² + 10y - 15 = 0 ONDE: a = 1 b = 10 c = -15
  28. 28. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>COEFICIENTES DA EQUAÇÃO DO 2º GRAU </li></ul><ul><li>OS NÚMEROS REAIS a , b E c SÃO CHAMADOS DE </li></ul><ul><li>COEFICIENTES DA EQUAÇÃO DO 2º GRAU, E SEGUEM </li></ul><ul><li>DA SEGUINTE FORMA: </li></ul><ul><li>“ a ” É SEMPRE O COEFICIENTE DO TERMO x² . </li></ul><ul><li>“ b ” É SEMPRE O COEFICIENTE DO TERMO x. </li></ul><ul><li>“ c ” É CHAMADO DE TERMO INDEPENDENTE OU MESMO </li></ul><ul><li>DE TERMO CONSTANTE. </li></ul>
  29. 29. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU O QUE SÃO EQUAÇÕES COMPLETAS E EQUAÇÕES INCOMPLETAS. COMO JÁ DEFINIMOS, O COEFICIENTE “ a ” É SEMPRE DIFERENTE DE ZERO ( a ≠ 0 ). MAS OS COEFICIENTES “ b ” E “ c ” PODEM SER NULOS.
  30. 30. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU QUANDO “ b ” E “ c ” SÃO DIFERENTES DE ZERO, A EQUAÇÃO SE DIZ COMPLETA. 2x² - 4x + 2 = 0 y² - 3y + 4 = 0 -3t² + 4t + 3 = 0 OBS.: TODAS AS EQUAÇÕES ACIMA SÃO CHAMADAS DE “ EQUAÇÕES COMPLETAS ”.
  31. 31. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EQUAÇÃO DO 2º GRAU QUANDO ( b = 0 ), OU ( c = 0 ) OU ( b = c = 0 ), A EQUAÇÃO SE DIZ INCOMPLETA. x² - 5 = 0 10x² = 0 t² + 2t = 0 OBS.: TODAS AS EQUAÇÕES ACIMA SÃO CHAMADAS DE “ EQUAÇÕES INCOMPLETAS ”.
  32. 32. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>COMO RESOLVER EQUAÇÕES DO 2º GRAU INCOMPLETAS </li></ul><ul><li>PARA RESOLVER UMA EQUAÇÃO, QUE SIGNIFICA </li></ul><ul><li>DETERMINAR O CONJUNTO DE SOLUÇÕES DESSA </li></ul><ul><li>EQUAÇÃO, INICIALMENTE OBSERVAMOS O SEGUINTE: </li></ul><ul><li>SE x² = a, ENTÃO x = RAIZ QUADRADA POSITIVA </li></ul><ul><li>E NEGATIVA (RELAÇÃO FUNDAMENTAL). </li></ul><ul><li>SE a.b = 0, ENTÃO a = 0 OU b = 0. </li></ul><ul><li>BASEADO NAS CONDIÇÕES ACIMA, VERIFICAREMOS COMO </li></ul><ul><li>RESOLVER AS EQUAÇÕES INCOMPLETAS DO 2º GRAU. </li></ul>
  33. 33. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU INCOMPLETAS A EQUAÇÃO É DA FORMA ax² + bx = 0, ONDE c = 0. EXEMPLOS x² - 4x = 0 COLOCANDO O FATOR “ x ” EM EVIDÊNCIA, TEMOS: x.(x – 4) = 0 x = 0 x - 4 = 0 x = 4 LOGO S = {0,4}
  34. 34. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS y² - 10x = 0 COLOCANDO O FATOR “ y ” EM EVIDÊNCIA, TEMOS: y.(y + 10) = 0 y = 0 y + 10 = 0 y = -10 LOGO S = {0,-10} OBSERVE QUE NOS DOIS EXEMPLOS ACIMA, SEMPRE PROCURAMOS COLOCAR A VARIÁVEL EM EVIDÊNCIA PARA QUE A EQUAÇÃO SEJA SOLUCIONADA MAIS RAPIDAMENTE.
  35. 35. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU INCOMPLETAS A EQUAÇÃO É DA FORMA ax² + c = 0, ONDE b = 0. EXEMPLOS x² - 49 = 0 CALCULANDO O TERMO INDEPENDENTE E TRANSPONDO O TERMO, TEMOS O SEGUINTE: x² - 49 = 0 x² = 49 x = +/- raiz quadrada de 49 (√49) – relação fundamental x = +/- 7 x = +7 ou -7 S = {-7,7}
  36. 36. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 4x² - 36 = 0 CALCULANDO O TERMO INDEPENDENTE E TRANSPONDO O TERMO, TEMOS O SEGUINTE: 4x² - 36 = 0 4x² = 36 x² = 36/4 x² = 9 x = +/- raiz quadrada de 9 (√9) – relação fundamental x = +/- 3 x = +3 ou -3 S = {-3,3}
  37. 37. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO IDENTIFIQUE OS COEFICIENTES DE CADA EQUAÇÃO E DIGA SE ELA É COMPLETA OU INCOMPLETA: 4x² - 2x - 2 = 0 a = 4 b = -2 c = -2 A EQUAÇÃO É DENOMINADA COMPLETA.
  38. 38. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO IDENTIFIQUE OS COEFICIENTES DE CADA EQUAÇÃO E DIGA SE ELA É COMPLETA OU INCOMPLETA: 4x² + 60 = 0 a = 4 b = 0 c = 60 A EQUAÇÃO É DENOMINADA INCOMPLETA.
  39. 39. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO IDENTIFIQUE OS COEFICIENTES DE CADA EQUAÇÃO E DIGA SE ELA É COMPLETA OU INCOMPLETA: x² - 6x = 0 a = 1 b = -6 c = 0 A EQUAÇÃO É DENOMINADA INCOMPLETA.
  40. 40. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO CALCULE A EQUAÇÃO ABAIXO. y² + 15y = 0 y.(y + 15) = 0 y = 0 y + 15 = 0 y = -15 S = {0, -15}
  41. 41. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU COMPLETAS INICIALMENTE OBSERVAMOS A FÓRMULA RESOLUTIVA E DISCRIMINANTE. CONSIDERANDO A EQUAÇÃO: ax² - bx + c = 0 EM QUE a , b E c PERTENCEM AOS REAIS “ R ” E a É DIFERENTE DE ZERO. SERÁ USADA A FÓRMULA RESOLUTIVA OU FÓRMULA DE BÁSCARA PARA A RESOLUÇÃO DE EQUAÇÕES COMPLETAS.
  42. 42. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU COMPLETAS A EXPRESSÃO: AONDE O SÍMBOLO APONTADO ACIMA CHAMA-SE “ DELTA ”.
  43. 43. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS COMO RESOLVER EQUAÇÕES DO 2º GRAU COMPLETAS A FÓRMULA DE BÁSCARA:
  44. 44. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O POLINÔMIO INDICADO E QUE SE ENCONTRA DENTRO DA RAÍZ DA FÓRMULA É CHAMADO DE DELTA OU DISCRIMINANTE . DESSA FORMA, A FÓRMULA RESOLUTIVA PODE SER ESCRITA NA FORMA.
  45. 45. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA CONFORME O DELTA SEJA POSITIVO, NEGATIVO OU NULO, EXISTEM TRÊS CASOS PARA SE ESTUDAR E RESOLVER:
  46. 46. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O DISCRIMINANTE É POSITIVO: A EQUAÇÃO TERÁ DUAS RAÍZES REAIS DIFERENTES E DISTINTAS, SENDO COSTUME FAZER ESTA REPRESENTAÇÃO POR x’ E x” . A FÓRMULA RESOLUTIVA DESTE CASO É:
  47. 47. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O DISCRIMINANTE É NULO: A EQUAÇÃO TERÁ DUAS RAÍZES REAIS E IGUAIS. NESTE CASO EXISTE UM CASO PARTICULAR PARA FÓRMULA RESOLUTIVA: x = -b/2a ASSIM x = x’ = x” = -b/2a
  48. 48. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS DELTA O DISCRIMINANTE É NEGATIVO: NESTE CASO O VALOR DA RAIZ QUADRADA DE DELTA NÃO EXISTE EM “ R ”, POIS NÃO EXISTE NO CONJUNTO DOS NÚMEROS REAIS A RAIZ QUADRADA DE UM NÚMERO NEGATIVO.
  49. 49. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x² - 6x + 5 = 0 a = 1 b = -6 c = 5 DISCRIMINANTE: = (-6)² - 4.(1).(5) = 36 – 20 = 16 16 > 0
  50. 50. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x = -(-6) +- √16  = 6 +- 4              2.(1)           2 x’ = 6 + 4 = 5             2   x’’ = 6 – 4 = 1          2   S = {1,5}
  51. 51. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x² = 5(2x – 5) x² = 10x – 25 x² -10x + 25 = 0 a = 1 b = -10 c = 25
  52. 52. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO DISCRIMINANTE: = (-10)² - 4.(1).(25) = 100 – 100 = 0 0 = 0 (DUAS RAÍZES)
  53. 53. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO Fórmula resolutiva:   x = x’ = x’’ = -b                      2a   x = -(-10)      ---> x = 10/2        2.(1)   x = 5   S = {5}
  54. 54. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXERCÍCIO x² + 3x + 8 = 0 a = 1 b = 3 c = 8
  55. 55. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>EXERCÍCIO </li></ul><ul><li>DISCRIMINANTE: </li></ul><ul><li>= (3)² - 4.(1).(8) </li></ul><ul><li>= 9 – 32 </li></ul><ul><li>= - 23 </li></ul><ul><li>23 < 0 </li></ul><ul><li>COMO < 0, A EQUAÇÃO NÃO TEM RAÍZES REAIS. </li></ul><ul><li>S = ø </li></ul>
  56. 56. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU INEQUAÇÃO DO 1º GRAU EM SUA DEFINIÇÃO MAIS SIMPLES E COMPREENSÍVEL, PODE SER DEFINIDA COMO TODA E QUALQUER SENTENÇA DA MATEMÁTICA QUE É ABERTA POR UM SINAL DE DESIGUALDADE. ax + b > 0 ax + b < 0 ax + b >= 0 ax + b <= 0 SENDO QUE: “ a ” E “ b ”, SÃO NÚMEROS REAIS E DIFERENTES DE ZERO ( a E b ≠ 0 ), RESPECTIVAMENTE.
  57. 57. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 2x – 8 > 0 3x – 9 < 0 4x + 9 >= 0 5x + 1/3 <= 0
  58. 58. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU O QUE REPRESENTA OS SINAIS DAS INEQUAÇÕES.
  59. 59. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU OBSERVANDO AS CONDIÇÕES DE VIDA DA POPULAÇÃO DO BRASIL, OBVIAMENTE ENCONTRAREMOS UM GRANDE MAR DE DESEQUILÍBRIO. ESTAS DESIGUALDADES PODEM SER ENCONTRADAS EM DIVERSAS ÁREAS, MAIS A QUE MAIS SE DESTACAM SÃO SOCIAL E ECONÔMICA. VEJAM ALGUNS EXEMPLOS DE DESIGUALDADES: SALARIAL: ENQUANTO MUITOS BRASILEIROS ESTÃO COM FAIXAS DE SALÁRIOS BAIXAS QUE MAL PODEM SE SUSTENTAR, ALGUNS OUTROS TEM SEUS SALÁRIOS ALTOS.
  60. 60. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO DO 1º GRAU HABITAÇÃO: MUITOS BRASILEIROS TÊM CASAS BOAS EM BAIRROS E CIDADES NOBRES, OUTROS NÃO TÊM CONDIÇÕES DE TER SUA CASA PRÓPRIA. MORADIA: AS PESSOAS QUE VIVEM NAS RUAS AUMENTAM CADA VEZ MAIS COM O PASSAR DOS ANOS. ALIMENTAÇÃO: CERCA DE 40% DA POPULAÇÃO QUE VIVE EM AMBIENTE RURAL, NO CAMPO, VIVE EM SITUAÇÃO PRECÁRIA.
  61. 61. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU NAS INEQUAÇÕES DO PRIMEIRO GRAU QUE ESTEJAM NA FORMA ax + b > 0, TEM-SE O OBJETIVO DE SE APURAR UM CONJUNTO DE TODAS E QUAISQUER POSSÍVEIS VALORES QUE POSSAM ASSUMIR UMA OU MAIS VARIÁVEL QUE ESTEJAM ENVOLVIDAS NAS INEQUAÇÕES PROPOSTA NO PROBLEMA.
  62. 62. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU DETERMINE TODOS OS POSSÍVEIS NÚMEROS INTEIROS POSITIVOS PARA AS QUAIS SATISFAÇA A INEQUAÇÃO: 3x + 5 < 17 VEJAOS SEGUINTES PASSOS PARA A SOLUÇÃO:
  63. 63. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU APÓS FAZER OS DEVIDOS CÁLCULOS DA INEQUAÇÃO ACIMA, PODE-SE CONCLUIR QUE A SOLUÇÃO APRESENTADA É FORMADA POR TODOS OS NÚMEROS INTEIROS E POSITIVOS MENORES QUE O NÚMERO 4. S = {1, 2, 3}
  64. 64. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 2 – 4x >= x + 17
  65. 65. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS 3(x + 4) < 4(2 – x)
  66. 66. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS QUAIS OS VALORES DE “x” QUE TORNAM A INEQUAÇÃO -2x + 4 > 0 VERDADEIRA.
  67. 67. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLOS O NÚMERO 2 NÃO É A SOLUÇÃO DA INEQUAÇÃO DADA, MAIS SIM QUALQUER VALOR MENOR QUE 2. PARA x = 1 -2x + 4 > 0 -2.(1) + 4 > 0 -2 + 4 > 0 2 > 0 (VERDADEIRO) OBSERVE, ENTÃO, QUE O VALOR DE “ x ” MENOR QUE 2 É A SOLUÇÃO PARA A INEQUAÇÃO.
  68. 68. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS <ul><li>PRINCÍPIOS PARA SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU </li></ul><ul><li>ADICIONANDO UM MESMO NÚMERO A AMBOS OS </li></ul><ul><li>MEMBROS DE UMA INEQUAÇÃO, OU SUBTRAINDO UM </li></ul><ul><li>MESMO NÚMERO DE AMBOS OS MEMBROS, A </li></ul><ul><li>DESIGUALDADE SE MANTÉM. </li></ul><ul><li>2) DIVIDINDO OU MULTIPLICANDO AMBOS OS MEMBROS DE </li></ul><ul><li>UMA INEQUAÇÃO POR UM MESMO NÚMERO POSITIVO, </li></ul><ul><li>A DESIGUALDADE SE MANTÉM. </li></ul><ul><li>3) DIVIDINDO OU MULTIPLICANDO POR UM MESMO NÚMERO </li></ul><ul><li>NEGATIVO AMBOS OS MEMBROS DE UMA INEQUAÇÃO DO </li></ul><ul><li>TIPO >, >=, < OU <=, A DESIGUALDADE INVERTE O SENTIDO. </li></ul>
  69. 69. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PRINCÍPIOS PARA SOLUÇÃO DE INEQUAÇÕES DO 1º GRAU É FÁCIL PERCEBER QUE A RESOLUÇÃO DE UMA INEQUA- ÇÃO DO 1º GRAU BASEIA-SE NOS MESMO PRINCÍPIOS DA RESOLUÇÃO DE UMA EQUAÇÃO DO 1º GRAU ATENTANDO -SE AO ITEM 3 ANTERIORMENTE QUE DIFERENCIA. UMA INEQUAÇÃO DO 1º GRAU É RESOLVIDA DA MESMA FORMA QUE SE RESOLVE UMA EQUAÇÃO DO 1º GRAU, SÓ QUE QUANDO O “ x ” É NEGATIVO, NO FINAL DA RESOLUÇÃO MULTIPLICA-SE AMBOS OS MEMBROS DA INEQUAÇÃO POR ( -1 ) E AÍ O SENTIDO SE INVERTE, SE É “ > ” FICA “ < “, SE É “ < “ FICA “ > ”, SE É “ <= “ FICA “ >= “ E SE É “ >= “ FICA “ <= “.
  70. 70. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO CONSIDERANDO COMO UNIVERSO O CONJUNTO DOS NÚMEROS NATURAIS, DETERMINE O CONJUNTO SOLUÇÃO DA INEQUAÇÃO: 5x – 8 < 3x + 12 5x – 3x < 12 + 8 2x < 20 x < 20/2 x < 10 ASSIM O CONJUNTO SOLUÇÃO DA INEQUAÇÃO É: S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
  71. 71. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS EXEMPLO SE, O UNIVERSO DO EXERCÍCIO ANTERIOR FOSSE O CONJUNTO DOS NÚMEROS REAIS, QUAL SERIA O CONJUNTO SOLUÇÃO DA INEQUAÇÃO? NÃO É POSSÍVEL EXPLICITAR, UM A UM, TODOS OS NÚMEROS REAIS MENORES QUE 10. POR ISSO, REPRESENTA-SE O CONJUNTO SOLUÇÃO “ S ” SIMPLESMENTE POR S = {x/x є R / x < 10}
  72. 72. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU QUANDO UMA EQUAÇÃO DO 1º GRAU É RESOLVIDA, SÃO USADOS OS RECURSOS MATEMÁTICOS TAIS COMO: SOMAR OU DIMINUIR UM VALOR IGUAL AOS DOIS MEMBROS DA EQUAÇÃO OU MULTIPLICAR E DIVIDIR OS MEMBROS DA EQUAÇÃO POR UM MESMO VALOR. O MESMO CONCEITO SERVE PARA A RESOLUÇÃO DAS INEQUAÇÕES DO 1º GRAU.
  73. 73. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU 5 > 3 RECURSO: 5 > 3 (SOMAR O VALOR 2) 5 + 2 > 3 + 2 7 > 5 (CONTINUA SENDO UMA INEQUAÇÃO VERDADEIRA)
  74. 74. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU 5 > 3 RECURSO: 5 > 3 (SUBTRARIA O VALOR 1) 5 – 1 > 3 – 1 4 > 2 (CONTINUA SENDO UMA INEQUAÇÃO VERDADEIRA) DESTA FORMA, É POSSÍVEL CONCLUIR QUE DE ACORDO COM AS PROPRIEDADES DAS EQUAÇÕES DE 1º GRAU, PODEMOS USAR OS MESMOS RECURSOS MATEMÁTICOS DE SOMAR OU SUBTRAIR UM MESMO VALOR AOS MEMBROS DA INEQUAÇÃO DO PRIMEIRO GRAU.
  75. 75. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU 5 > 2 RECURSO: 5 > 2 (MULTIPLICAR PELO VALOR NEGATIVO -2) 5.(-2) > 2.(-2) -10 > -4 (A INEQUAÇÃO NÃO É VERDADEIRA) PARA QUE A INEQUAÇÃO ACIMA SE TORNE VERDADEIRA É PRECISO INVERTER O SINAL. -10 < -4 (AGORA A INEQUAÇÃO É VERDADEIRA)
  76. 76. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS PROPRIEDADES DA INEQUAÇÃO DO 1º GRAU PORTANTO, É PRECISO TER O MÁXIMO DE CUIDADO AO UTILIZAR O RECURSO MATEMÁTICO DE (MULTIPLICAR OU DIVIDIR POR UM MESMO VALOR OS COMPONENTES DA INEQUAÇÃO) PARA RESOLVER UMA INEQUAÇÃO DO PRIMEIRO GRAU. CASO ESTE VALOR SEJA UM NÚMERO NEGATIVO, O SINAL DE DESIGUALDADE (INEQUAÇÃO) DEVE SER INVERTIDO.
  77. 77. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU DADAS AS FUNÇÕES f(x) E g(x), CHAMAMOS DE INEQUAÇÃO- PRODUTO TODA INEQUAÇÃO QUE PODE ASSUMIR UMA DAS SEGUINTES FORMAS: f(x).g(x) > 0 f(x).g(x) >= 0 f(x).g(x) < 0 f(x).g(x) <= 0
  78. 78. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU A FORMA DA INEQUAÇÃO-PRODUTO PODE SER ESTENDIDA PARA MAIS DE DUAS FUNÇÕES. (x – 1).(2x – 3).(x + 1) < 0 (x – 2).(-2x + 1).(4 – x) <= 0
  79. 79. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU PARA RESOLVERMOS INEQUAÇÕES-PRODUTO, PRIMEIRO ESTUDAMOS O SINAL DE CADA FUNÇÃO QUE COMPÕE O PRODUTO E, ENTÃO, DETERMINAMOS O SINAL DO PRODUTO. (x – 1).(2x – 3) >= 0 f(x) = x – 1 g(x) = 2x – 3 f(x) = 0 x – 1 = 0 x = 1 (ZERO DA FUNÇÃO)
  80. 80. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS INEQUAÇÃO-PRODUTO DO 1º GRAU COMO a = 1 > 0, VEM:
  81. 81. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS g(x) = 0 2x – 3 = 0 2x = 3 x = 3/2 COMO a = 2 > 0, VEM:
  82. 82. PROAB 2010 AULA 6 PREPARATÓRIO PARA CONCURSOS QUADRO DO PRODUTO LOGO: S = {x є R/ x <= 1 ou x >= 3/2}
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×