Your SlideShare is downloading. ×
WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

WE3.L10.3: THE FUTURE OF SPACEBORNE SYNTHETIC APERTURE RADAR

1,858
views

Published on


0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,858
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
215
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. A Tribute to the Pioneer Work of Kiyo Tomiyasu The Future of Spaceborne Synthetic Aperture Radar G. Krieger, A. Moreira Microwaves and Radar Institute German Aerospace Center (DLR)
  • 2. First Civilian SAR Satellite: Seasat Launch June 26, 1978 Wavelength 0,235 m Altitude ~780 km Bandwidth 19 MHz Weight 2300 kg Antenna 10,74 m x Size 2,16 m Incident Angle ~ 23° Swath Width 100 km Resolution 25 m x 25 m The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 3. First Civilian SAR Satellite: Seasat Launch June 26, 1978 Wavelength 0,235 m Altitude ~780 km Bandwidth 19 MHz Weight 2300 kg Antenna 10,74 m x Size 2,16 m Incident Angle ~ 23° Swath Width 100 km Resolution 25 m x 25 m The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 4. SAR Missions since 1978 (selection) SEASAT ERS-1/2 J-ERS-1 SIR-C/X-SAR NASA/JPL (USA) European Space Agency (ESA) Japanese Space Agency (NASDA) NASA/JPL, L- and C-Band (quad) L-Band, 1978 C-Band, L-Band, 1992-1998 DLR / ASI, X-band 1991-2000 & 1995-today April and October 1994 RADARSAT-1 SRTM ENVISAT / ASAR ALOS / PALSAR Canadian Space Agency (CSA) NASA/JPL (C-Band), DLR (X-Band) European Space Agency (ESA) Japanese Space Agency (JAXA) C-Band, 1995-today February 2000 C-Band (dual), 2002-today L-Band (quad), 2005 SAR Lupe CosmoSkymed TerraSAR-X RADARSAT-2 BWB Germany ASI / Alenia German Aerospace Center (DLR) / Astrium Canadian Space Agency (CSA) X-Band, 2006 X-Band (dual), 2007 X-Band (quad), 2007 C-Band (quad), 2007 The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 5. Earthquakes Volcanoes Land & Sea Ice Ocean Land Environment Subsidence Traffic Disaster Reconnaissance The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 6. Future SAR Systems: Motivation Application Areas for SAR Data Future Requirements Earthquakes Volcanoes Land & Sea Ice • wider coverage and shorter revisit times • higher geometric and radiometric resolution • new data products from Ocean Land Environment Subsidence coherent combinations of SAR images: - Delta-DEMs (ice mass balance, ...) - 3-D volume imaging Traffic Disaster Reconnaissance (forest structure, ...) - 4-D tomography (biomass dynamics, …) • reliable data supply • cost efficiency The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 7. Future SAR Systems: Motivation The Many Ingenious Ideas of Kiyo Tomiyasu Future Requirements • wider coverage and shorter revisit times • higher geometric and radiometric resolution • new data products from coherent combinations of SAR images: - Delta-DEMs (ice mass balance, ...) - 3-D volume imaging (forest structure, ...) - 4-D tomography (biomass dynamics, …) • reliable data supply • cost efficiency The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 8. (IEEE EASCON, 1978) The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 9. TanDEM-X The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 10. TanDEM-X Launch, June 21, 2010 The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 11. The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 12. First TanDEM-X Interferogram & DEM (Large Baseline Pursuit Monostatic) October Revolution Island The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 13. First TanDEM-X Interferogram & DEM (Large Baseline Pursuit Monostatic) 20 km 38 km of Spaceborne Synthetic Aperture Radar The Future IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 14. First TanDEM-X Interferogram & DEM (Large Baseline Pursuit Monostatic) The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 15. First TanDEM-X Interferogram & DEM (Large Baseline Pursuit Monostatic) hamb = 3 m Beff = 2.6 km x = 20 m x 20 m h  10 cm The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 16. First TanDEM-X Interferogram & DEM (Large Baseline Pursuit Monostatic) hamb = 3 m Beff = 2.6 km x = 20 m x 20 m h  10 cm The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 17. First TanDEM-X Interferogram & DEM (Large Baseline Pursuit Monostatic) hamb = 3 m Beff = 2.6 km x = 20 m x 20 m h  10 cm • TanDEM-X Special Session:  Thursday, 8:20 – 10:00 am • Prats et al., “Taxi: A versatile processing ...,”  Friday, 9:40 – 10:45 am • www.dlr.de The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 18. Measurement of Height Changes “Double Differential SAR Interferometry” e.g. difference between two single-pass cross-track interferograms pass 1 Bistatic 1 Bistatic Strip map Strip map B ==3000 m B 3000 m x ==12 m h(t1) x 12 m pass 2 2 h < 10 cm h(t2)   h ~ 2 - 1 coherence between passes not mandatory  Grounding line detection, vegetation growth, snow/ice accumulation, … ? The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 19. Single-Pass InSAR for Ice Monitoring High uncertainty about future sea level rise IPCC’07 height increase 28 - 43 cm, now 1.4 m major uncertainty: stability of polar ice sheets Large Baseline Single-Pass InSAR provides high resolution also in complex terrain avoids gaps of laser & radar altimetry systems allows accurate observation of temporal evolution Vorhaben TanDEM-X Nutzung
  • 20. Single-Pass InSAR for Ice Monitoring • Börner et al., “SIGNAL: SAR for Ice, Glacier ...”  Thursday, 9:40 – 10:45 am High uncertainty about future sea level rise IPCC’07 height increase 28 - 43 cm, now 1.4 m major uncertainty: stability of polar ice sheets Large Baseline Single-Pass InSAR provides high resolution also in complex terrain avoids gaps of laser & radar altimetry systems allows accurate observation of temporal evolution Vorhaben TanDEM-X Nutzung
  • 21. Measurement of Polarimetric SAR Vegetation Height Interferometry (Pol-InSAR) m 30 ~ Estimation of the vertical structure of volume scatterers: Vertical structure components are resolved by means of their polarimetric signature; The (height) location of the resolved structural components is estimated by interferometric measurements. The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 22. Measurement of 3-D Vegetation Structure Combination of Multiple Single-Pass Interferograms pass 1 pass k pass N … … * * * Reconstruction of Scattering Profile (van Cittert-Zernike theorem) The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 23. The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 24. Tomography: A Revolution in Medical Diagnostics and Research The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 25. The Next Revolution: Functional Brain Imaging The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 26. The Next Revolution: Functional Brain Imaging 4-D SAR Imaging monitoring internal structure changes The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 27. 4-D SAR Imaging monitoring internal structure changes in forests, ice, snow, permafrost soils, ... The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 28. Use of Compact Antennas ambiguities Rx 3 Rx 2 Rx 1 Tx v P1  f  P2  f  ambiguities suppressed P3  f  The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 29. Multistatic Sparse Array Linear Beamforming: s3(x,t ) Interferometry: s2(x,t ) sN (x,t ) • ambiguity s1(x,t ) • cross-track (DEM, suppression Pol-InSAR) • wide swath • coherence imaging tomography • tomography • along-track (ocean • MTI (e.g. STAP) currents, MTI) • super-resolution si ( x,t ) s j ( x,t ) • interference suppression SAR SAR SAR SAR SAR SAR s1( x,t ) sN (x,t ) SAR SAR Proc. SAR SAR Proc. Challenge: Proc. Proc. Proc. Proc. Proc. Proc. Proc. Proc. Optimum Combination N xx x h (x,t, x',t' )  s (x',t' )  dx'dt' Nonlinear Approach x i i s1( x,t ) sN ( x,t ) x i 1 f s1( x,t ),..., sN ( x,t ) Interf. Comb. The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 30. Sparse Apertures and Reconfigurable Arrays The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 31. Frequent Monitoring The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 32. Kiyo Tomiyasu (IEEE Ant. & Prop. Symp., 1978) (IEEE EASCON, 1978) GEO+LEO GEO The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 33. GEO-LEO SAR: NESZ Example Wavelength 3.1 cm Max. Bandwidth 300 MHz Average Transmit Power 1000 W Antenna Size Tx 100 m2 Antenna Size Rx 6 m2 Noise Figure + Losses 5 dB Receiver Altitude 400 km Ground Resolution 3m Max. Res. Cell Diameter 6m nadir-looking SAR enables synergy with other instruments (e.g. optical sensors, altimeters, ....) res< 6m 200 km 200 km 200 km Br<300MHz The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 34. Antenna Footprint Comparison LEO er receiv te satelli Receiver Footprint   10 km (X-Band, dant=2m, inc<40°) Transmitter Footprint 125 km x 250 km (X-Band, dant=10m, =48°) transmitter The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 35. Multiple Beams on Receive Tx Rx The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 36. Digital Beamforming on Receive Transmitter Multiple Receiver beams with adaptable antenna patterns Mixing x x x x x Analog A A A A A Digital D D D D D Conversion Digital Signal Digital Beam Forming Processing Focusing and Higher-Level SAR Processing Processing The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 37. Global Monitoring High-Resolution Wide-Swath Imaging Usage of Tx Power gain improved by more than 10 dB The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 38. Echolocation in Bats 19.12.2005 Vortragstitel 38
  • 39. 19.12.2005 Vortragstitel 39
  • 40. Pinna Movement for Angular "Scan on Receive" 19.12.2005 Vortragstitel 40
  • 41. The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 42. 19.12.2005 Vortragstitel 42
  • 43. 19.12.2005 Vortragstitel 43
  • 44. 19.12.2005 Vortragstitel 44
  • 45. DBF-SAR with Reflector Antennas 
  • 46. MEOSAR 3 revisits / day (for 1 satellite) huge simultaneous access area multi- frequency capability system concept based on advanced DBF architecture The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 47. Adaptive & Cognitive MIMO SAR Systems maximize information gain for salient features a given power & data budget beam trigger DBF on waveform receive encoding Spotlight Zoom Wide Area HRWS Search Stripmap environment optimized distribution of system resources of Spaceborne Synthetic Aperture Radar The Future IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 48. The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu
  • 49. Kiyo Tomiyasu Best wishes and many congratulations! The Future of Spaceborne Synthetic Aperture Radar IGARSS 2010 - Special Session Honoring the Achievements of Kiyo Tomiyasu