INVESTIGATION OF OYASHIO-KUROSHIO FRONTAL ZONE USING  ALOS PALSAR  IMAGES AND ANCILLARY INFORMATION Leonid M. Mitnik and V...
Kuroshio - Oyashio  transition zone The  Kuroshio  and  Oyashio , which are the western boundary currents, have great infl...
Kuroshio - Oyashio The eddies may persist in this region for periods ranging from several months to more than one year, an...
Geography and hydrography of the study region (a) Bottom topography (from  Smith and Sandwell , 1997 ), (b) magnitude of m...
Schematic summary of the main hydrographic features of the  Kuroshio - Oyashio  Extension Region  S. Itoh and I. Yasuda, C...
Schematic summary of the behavior of mesoscale eddies in the  Kuroshio - Oyashio  Extension Region WCR , CCR,  KE, SAF, SA...
Pacific saury migration roots Kuroshio front Oyashio subarctic front Thermal front  in the transition zone N. Ishiko, H. K...
Hokkaido Itoh ,Yasuda, and Ueno, PICES, 2010
ALOS was launched on January  2006 PALOS PALSAR PALSAR characteristics PALSAR   operates at wavelengh of 23.6 cm Regime Fi...
Kuroshio - Oyashio  transition zone  Mitnik L.M. and V.B. Lobanov (1991) ,  Reflection of oceanic fronts on satellite rada...
Hokkaido 1 3 2 1 3 2 Kuroshio-Oyashio and synoptic eddies  Okean-7  X-band Real Aperture Radar (RAR)  and  NOAA AVHRR- der...
Eddy on ERS-1 image The imaged area lies just east of  the   Tsugaru Strait  separating the  Hokkaido  and  Honshu  Island...
Kuroshio - Oyashio  transition zone. 18 April  2006 (а)  ALOS PALSAR  image ( b )  NGSST map derived with  MODIS, AVHRR  a...
ALOS PALSAR.  Anticyclonic eddy (а)  (б)  (в)  (б)  290 км (a) (b) PALSAR  image acquired on 18 April 2009 at 01:10 UTC; (...
ALOS PALSAR.  Anticyclonic eddy (а)  (б)  (в)  (б)  290 км PALSAR  image acquired on 18 April 2009 at 01:10 UTC; (b) sea s...
Aqua MODIS.  19 April 2009, 03:40 UTC (c) Infrared image (31-st channel) and (d) chl-a field  2 2 3 3 1 1 1 –  warm waters...
II I II I (а)  ALOS PALSAR   image in ScanSAR mode. 18 April,  01:10  UTC .  ( b )  METOP ASCAT -derived wind field.  Frag...
(а)  NOAA AVHRR  infrared images acquired on  19  April ( b )  SST for  18  April, Fishery Research Association  ( Japan )...
ALOS PALSAR 18 April 2009 at 01:10 UTC Fragment III. Spiral anticyclonic eddy 4
Kuroshio - Oyashio  transition zone 4-5 May 2010 (а)  NOAA AVHRR  infrared image taken on  4  May  ( b )  Agua  MODIS -der...
Terra MODIS  visible image.  5 May  2010 ,  01:25  UTC . boundaries of PALSAR  image sun glint area 25  km
Kuroshio - Oyashio  transition zone on 5 May 2010 Terra MODIS   01:25 Гр.  70 km Hokkaido ( а) (b ) (c ) <ul><li>ALOS PALS...
Kuroshio - Oyashio  transition zone. 5 May 2010 (a)  ALOS PALSAR  image at 00:49 UTC in Fine beam mode (pixel size is 14 m...
2 km Gray level м A A Alternating bands of calm (dark) and roughened (gray) water caused SST variations or roll convection...
Conclusions <ul><li>Structure of the  Kuroshio - Oyashio  transition zone is revealed on satellite radar images obtained a...
Upcoming SlideShare
Loading in...5
×

TU4.T10.2.ppt

314

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
314
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

TU4.T10.2.ppt

  1. 1. INVESTIGATION OF OYASHIO-KUROSHIO FRONTAL ZONE USING ALOS PALSAR IMAGES AND ANCILLARY INFORMATION Leonid M. Mitnik and Vyacheslav B. Lobanov   V.I. Il'ichev Pacific Oceanological Institute FEB RAS, 43 Baltiyskaya St., Vladivostok 690041, Russian Federation, e-mail: mitnik@poi.dvo.ru   IGARSS 2011 24-20 July, Vancouver, Canada 2011 IEEE International Geoscience and Remote Sensing Symposium Authors thank JAXA for ALOS PALSAR images provided for projects № 354 и 365.
  2. 2. Kuroshio - Oyashio transition zone The Kuroshio and Oyashio , which are the western boundary currents, have great influence on climate in the western North Pacific. The Kuroshio and the Oyashio meet in the Pacific ocean east of Japan and a complex oceanic feature associated with warm and cold eddies appears in this region. Therefore, the Kuroshio -Oyashio transition zone is sometime called &quot;the confluence zone”. Oyashio water has low temperature, low salinity and is rich in nutrients compared with subtropical water. Since the large temperature difference between the Kuroshio and Oyashio waters, there appear many temperature fronts and eddies of various scales. This region is also well known as one of the good commercial fish grounds in the World ocean. Seasonal and interannual dynamics of the Oyashio and Kuroshio are closely linked to climate change and influence the migrations and fluctuations of fishes in the northwestern Pacific.
  3. 3. Kuroshio - Oyashio The eddies may persist in this region for periods ranging from several months to more than one year, and their occurrence and physical and biological evolution have a strong influence on the local climate, hydrography, and fisheries ( Sugimoto and Tameishi, 1992; Yasuda et al., 1992 ). The occurrence and behavior of these mesoscale eddies are known to be related to both bottom topography and variability in currents They are monitored mainly via hydrography, satellite infrared images, and altimetry data. . While heat transport can occur by both warm and cold eddies and noneddy fluctuations, significant material transport only occurs via the movement of intense eddies that trap water within their core. Long-distance poleward movements of intense Warm Core Rings along the trenches play an important role in the exchange of salinity and nutrients between the subtropical and western subarctic gyres.
  4. 4. Geography and hydrography of the study region (a) Bottom topography (from Smith and Sandwell , 1997 ), (b) magnitude of mean geostrophic velocity (color scale) and mean dynamic height with 1500-db reference [gray contours in m; ( Rio and Hernandez, 2000). Front lines (defined as bands of relatively strong mean geostrophic flows, denoted as the Subarctic Front ( SAF ) and the subarctic boundary ( SAB ) are represented by black dashed lines .
  5. 5. Schematic summary of the main hydrographic features of the Kuroshio - Oyashio Extension Region S. Itoh and I. Yasuda, Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension Region detected from the distribution of the Sea Surface Height Anomaly, J. Phys. Oceanography , 2010, vol. 40 , 1018-1034. OY : Oyashio current , OYI : southward intrusion of the Oyashio , WC R: warm-core ring , CCR : cold-core ring , CWA : coldwater area , KE : Kuroshio Extension, KBF : Kuroshio bifurcation front, TW C: Tsugaru Warm Current .
  6. 6. Schematic summary of the behavior of mesoscale eddies in the Kuroshio - Oyashio Extension Region WCR , CCR, KE, SAF, SAB, and TWC represent warm-core ring, cold core ring, the Kuroshio Extension, Subarctic Front, subarctic boundary, and the Tsugaru Warm Current , respectively. ( Itoh and Yasuda, 2010 ). Thin dashed arrows indicate movement directions. Flows of the Oyashio and the KE, the SAF, and the SAB are shown by solid gray lines; the deepest part of the Japan and Kuril–Kamchatka Trenches is depicted by a dashed gray line.
  7. 7. Pacific saury migration roots Kuroshio front Oyashio subarctic front Thermal front in the transition zone N. Ishiko, H. Kiyofuji and S.-i. Saito, Relationship between Pacific saury fishing grounds and the Oyashio front in the Northwestern Pacific Ocean
  8. 8. Hokkaido Itoh ,Yasuda, and Ueno, PICES, 2010
  9. 9. ALOS was launched on January 2006 PALOS PALSAR PALSAR characteristics PALSAR operates at wavelengh of 23.6 cm Regime Fine ScanSAR Polarimetric Polarization HH , HV HH + HV VV + VH HH , VV HH + HV + VV + VH Incident angle 8 - 60 ° 18 - 43 ° 8 - 30 ° Pixel size , m 7 - 44 14 - 88 100 24 - 89 Swath width , km 40 - 70 40 - 70 250 - 350 20 - 65
  10. 10. Kuroshio - Oyashio transition zone Mitnik L.M. and V.B. Lobanov (1991) , Reflection of oceanic fronts on satellite radar images, Oceanography of Asian Marginal Seas , Kenzo Takano, Ed., Amsterdam, Elsevier, pp. 85-101. Hokkaido Hokkaido Honshu NOAA-10 AVHRR infrared image acquired on 30 April 1987 (left) and Kosmos-1500 Real Aperture Radar image Warm eddy Cold Oyashio water Distance, km Temperature Resolution 1-2 km
  11. 11. Hokkaido 1 3 2 1 3 2 Kuroshio-Oyashio and synoptic eddies Okean-7 X-band Real Aperture Radar (RAR) and NOAA AVHRR- derived SST. 20 November 1999. White rectangle marks the boundaries of RAR image. Wind speed to the south of Kuril Islands was 5-6 m/s. Anticyclonic eddy 1, warm Kuroshio waters 2 and cold Oyashio waters 2 are revealed due to high radar contrast. Fine details of SST field (such as warm streamer 4 and others) are clearly depicted on the RAR image. SST contrasts reach 12°C at the eddy boundary. Kuril Islands Kuril Islands Okhotsk Sea Okhotsk Sea 4 4 460 km Resolution 1-2 km
  12. 12. Eddy on ERS-1 image The imaged area lies just east of the Tsugaru Strait separating the Hokkaido and Honshu Islands in the Kuroshio - Oyashio transition zone. The transition zone exhibits strong mesoscale variability. This variability in the current system manifests itself in mesoscale meanders and eddies, which are generated in the frontal zone by instabilities. 23-Dec-1994 01:08 UTC Warm anticyclo-nic eddy in the Pacific Ocean generated by the Kuroshio Current. Hokkaido Honshu 100 km Pixel size 25 x 25 m
  13. 13. Kuroshio - Oyashio transition zone. 18 April 2006 (а) ALOS PALSAR image ( b ) NGSST map derived with MODIS, AVHRR and AMSR-E data (в) QuikSCAT -derived wind field (а) ( b ) ( c ) H onshu Sea surface temperature Sea surface wind speed
  14. 14. ALOS PALSAR. Anticyclonic eddy (а) (б) (в) (б) 290 км (a) (b) PALSAR image acquired on 18 April 2009 at 01:10 UTC; (b) sea surface temperature map for the same day submitted by Fishery Research Association. Red rectangle marks the PALSAR image boundaries. 5 6 Honshu Honshu Hokkaido 4 3 1
  15. 15. ALOS PALSAR. Anticyclonic eddy (а) (б) (в) (б) 290 км PALSAR image acquired on 18 April 2009 at 01:10 UTC; (b) sea surface temperature map for the same day submitted by Fishery Research Association. Red rectangle marks the boundaries of PALSAR image. 1 – warm waters , 2- cold waters , 3 – warm streamer , 4-6 and 5 – cold small eddies , 6 – warm small eddy . 2 (a) (b) 5 6 Honshu Honshu Hokkaido 4 3 1
  16. 16. Aqua MODIS. 19 April 2009, 03:40 UTC (c) Infrared image (31-st channel) and (d) chl-a field 2 2 3 3 1 1 1 – warm waters , 2- cold waters , 3 – warm streamer , 4 and 5 – cold small eddies , 6 – warm small eddy . Red dotted rectangle marks the boundaries of PALSAR image. (c) (d) 5 5 6 6 Honshu Honshu Hokkaido 4 4
  17. 17. II I II I (а) ALOS PALSAR image in ScanSAR mode. 18 April, 01:10 UTC . ( b ) METOP ASCAT -derived wind field. Fragments I and II. 1: warm eddy , 2: cold waters , 3: warm streamer. Fragment III: cold eddy 4 (а) ( b ) 1 2 3 1 2 III 3 2 1 1 2 4 Honshu Hokkaido
  18. 18. (а) NOAA AVHRR infrared images acquired on 19 April ( b ) SST for 18 April, Fishery Research Association ( Japan ) ( c ) Aqua MODIS chl-a concentration for 19 April at 03:35 UTC Red dotted rectangle marks the boundaries of PALSAR image. Transition zone Kuroshio- Oyashio. 18 -19 April 2009 (а) ( b ) ( c ) 1300 km 1 3 1 2 Honshu 2 4 4
  19. 19. ALOS PALSAR 18 April 2009 at 01:10 UTC Fragment III. Spiral anticyclonic eddy 4
  20. 20. Kuroshio - Oyashio transition zone 4-5 May 2010 (а) NOAA AVHRR infrared image taken on 4 May ( b ) Agua MODIS -derived SST, 4 May. ( c ) NGSST, retrieved with Aqua MODIS, NOAA AVHRR and Aqua AMSR-E data for 5 May. Red dotted rectangles mark the boundaries of PALSAR image. (а) ( b ) ( c ) Clouds Honshu Hokkaido Honshu Honshu
  21. 21. Terra MODIS visible image. 5 May 2010 , 01:25 UTC . boundaries of PALSAR image sun glint area 25 km
  22. 22. Kuroshio - Oyashio transition zone on 5 May 2010 Terra MODIS 01:25 Гр. 70 km Hokkaido ( а) (b ) (c ) <ul><li>ALOS PALSAR image at 00:49 UTC in Fine beam mode (pixel size is 14 m), </li></ul><ul><li>Terra MODIS infrared (31-st channel) image at 01:25 UTC and </li></ul><ul><li>MetOp ASCAT -derived wind field at 11:55 UTC. Red rectangles mark the PALSAR image boundaries. </li></ul>146°20 ‘E 146° 4 0 ‘E 40 °20 ‘N 40 ° 0 0 ‘N 39 ° 4 0 ‘N 39 ° 2 0 ‘N 50 км
  23. 23. Kuroshio - Oyashio transition zone. 5 May 2010 (a) ALOS PALSAR image at 00:49 UTC in Fine beam mode (pixel size is 14 m) and Terra MODIS (b) infrared (31-st channel) and (c) visible images at 01:25 UTC. Red dotted rectangles mark the PALSAR image boundaries. 1 - warm anticyclonic eddy, the size of ≈30 km; 2 - warm streamer; 3 - warm eddy. High correlation between the infrared (SST) and visible (Chl-a) images is observed within the broader sun glint area far beyond the PALSAR image boundaries, in particular, for warm eddies 4 and 5, cold streamer 6 and other features. Honshu 50 km 70 km 2 1 1 1 2 2 3 3 3 4 4 5 5 6 6 Hokka ido 142E 146E 150E (a) (b) (c)
  24. 24. 2 km Gray level м A A Alternating bands of calm (dark) and roughened (gray) water caused SST variations or roll convection in the boundary layer of the atmosphere. Band width is approximately 300-500 m . Radar contrasts in a tail of anticyclonic eddy 500 m
  25. 25. Conclusions <ul><li>Structure of the Kuroshio - Oyashio transition zone is revealed on satellite radar images obtained at X, C and L-bands ( Kosmos RAR, ERS-1/2, Envisat, ALOS ), on infrared and visible images obtained by various sensors ( MODIS, AVHRR, …). </li></ul><ul><li>Warm eddies are characterized by the lower values of chl-a concentration and increased values of the NRCS against the surrounding colder waters. SST contrasts of these eddies can reach 6-8 and more Celsius. Chl-a concentration in cold Oyashio waters can reach 1 mg/m 3 and more. </li></ul><ul><li>Variations in ocean color and in the sea surface roughness are responsible for eddy detection on visible images in sun glint and surrounding areas. </li></ul><ul><li>Relationship between NRCS and the SST can be explained by the variations in stability of the air flow above the sea surface caused by changes in SST, the close connection between surface film concentration and SST field, the changes of relative wind speed over the moving waters, and other factors (dependence of water viscosity on the SST, etc). The determination of the relative contribution of each of above mechanisms in radar contrast formation at various wavelength and polarizations is a complicated problem and requires special satellite and ground truth experiments. </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×