RepresentationOfTsunamisInGeneralizedHyperspace.ppt

335 views
283 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
335
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • 1.Instantaneous – Mentawai 2010 2 False Positive 3.Expensive 4.Not Available..
  • RepresentationOfTsunamisInGeneralizedHyperspace.ppt

    1. 1. REPRESENTATION of TSUNAMIS in GENERALIZED HYPERSPACE Email: * [email_address] **kingkarn@ice.ci.ritsumei.ac.jp Frank C. Lin* University of Maryland Eastern Shore, Princess Anne, MD. 21801, U.S.A . and Kingkarn Sookhanaphibarn** Ritsumeikan University,Kusatsu, Shiga,525-8577, Japan
    2. 2. PLAN of this TALK I. First, we recapitulate a previous study* in which a new, reliable, unequivocal, economical and instantaneous response method for DETECTING tsunamis at birth using TIR images from geostationary satellites; II. We show then the representations for tsunamis can be mapped into each other by a linear transformation. *Lin,F.C., na Nakornphanom, K.Sookhanaphibarn and Lursinsap, C: “A New Paradigm for Detecting Tsunamis by Remote Sensing”, International Journal of Geoinformatics , Vol.6, No.1, March, 2010, p.19-30
    3. 3. Fig.1: The DART Method
    4. 4. Shortcomings of the DART System <ul><li>I.Time Delay: </li></ul><ul><li>Mentawai (2010), Tohoku (2011); </li></ul><ul><li>II. Cost; </li></ul><ul><li>III. Reliability; </li></ul><ul><li>IV. Availability </li></ul>
    5. 5. Fig.2: FY-2C 041226 0800 IR1
    6. 6. MAIN EVENT F ig.3: Signal along latitude 1067 (Banda Aceh) at 7 am F ig.4: Signal along latitude 1067 (Banda Aceh) at 8 am
    7. 7. Fig. 5: Wavelet Decomposition at Latitude 1067, 7 am Fig. 6: Wavelet Decomposition at Latitude 1067, 8 am
    8. 8. TABLE I .
    9. 9. Fig.7: Earthquake Locations
    10. 10. Fig.8 : Signal from the Sumatra Aftershock at 09:00 a.m Fig.9 : Signal from the Aftershock at 10:00 a.m
    11. 11. Fig. 10: Detail Decomposition of Aftershock Signal at 0900 and Latitude 1067 Fig 11 Detail : Decomposition of Aftershock Signal at 1000 and Latitude 1067
    12. 12. NOAA Pathfinder V - TIR Images
    13. 13. Declouded IR images from the NOAA V5 Pathfinder satellite Fig 12 : Detail Wavelet Decomposition of NOAA Night Image Fig.13 : Detail Wavelet Decomposition of NOAA Day Image
    14. 14. 4.The Nicobar Island: (Location 3): Fig.14 : Signal from the Nicobar Aftershock at 0900 LAT 1042 Fig.15 : Signal from the Nicobar Aftershock at 1000 LAT 1042
    15. 15. Wavelet Decomposition,Nicobar Fig.16 : Wavelet Decomposition at Nicobar at 0900 LAT 1042 Fig.17 : Wavelet Decomposition at Nicobar at 1000 LAT 1042
    16. 16. CASE 1:ANDAMAN-1 and ANDAMAN-4 LAT 1012 : (Location 4 &7): FIG.18 : ANDAMAN-1 & 4 Signal 0600 LAT 1012 Fig.19 : Wavelet Decomposition of ANDAMAN-1 & 4 at 0600, LAT 1012
    17. 17. ANDAMAN-4 0700 LAT 1012 Fig.:20 : Signal for ANDAMAN-4 0700 LAT 1012 Fig.21 : Wavelet Decomposition for ANDAMAN-4 0700 LAT 1012
    18. 18. At 0800, another tsunami signal is detected at the Andaman-1 epicenter Fig.22 : Signal for ANDAMAN-1 0800 LAT 1012 Fig.23 : Wavelet Decomposition for ANDAMAN-1 0800 LAT 1012 LON 978
    19. 19. CASE 2: ANDAMAN-2 , LAT 978 : (Location 5 ): Fig.24 : Satellite Photo of Epicenter for ANDAMAN-2 0800 LON 958
    20. 20. No Tsunami Cases : Fig.25 : Signal for ANDAMAN-2 0700 LAT 978 Fig.26 : Wavelet Decomposition of ANDAMAN-2 0700 LAT 978
    21. 21. No Tsunami Cases: Fig. 27 : Signal of ANDAMAN-2 0800 LAT 978 LON 958 Fig.28 : Wavelet Decomposition for ANDAMAN-2 0800 LAT 978
    22. 22. CASE 3: ANDAMAN-3,LAT 965 (Location 6): Fig.29 : Signal for ANDAMAN-3 10:56 LAT 965 Fig:30 : Wavelet Decomposition for ANDAMAN-3 10:56 LAT 965
    23. 23. ANDAMAN-3 Lat.965 11:29 (No Tsunami Signal) Fig.31 : Signal for ANDAMAN-3 11:29 LAT 965 LON 955 Fig.32 : Wavelet Decomposition for ANDAMAN-3 11:29 LAT 965 LON 955
    24. 24. Tsunami Magnitude & Intensity <ul><ul><ul><ul><ul><li>M t = log 2 (S) (1) </li></ul></ul></ul></ul></ul><ul><li>where </li></ul><ul><li>M t = Infrared Tsunami Magnitude, </li></ul><ul><li>S = Tsunami Signal at the epicenter . </li></ul>Intensity: I t = log 2 (√2 * S) (2)
    25. 25. Infrared Tsunami vs Earthquake Magnitude <ul><li>M e = 9.2299 - 0.0592*log 2 (S) (3) </li></ul>
    26. 26. Tsunami Index I <ul><li>I = 1000*log 2 -1 (S)-110 (4) </li></ul>
    27. 27. Earthquake vs Infrared Tsunami Index at Epicenter
    28. 28. System Modules <ul><li>Satellite  Receiver  Computer  </li></ul><ul><ul><ul><ul><ul><li> </li></ul></ul></ul></ul></ul><ul><li> PMEL </li></ul><ul><li>Visualization  Monitoring  Alarm </li></ul>
    29. 29. Representations of Tsunamis : <ul><li>Signal Diagram (Canonical Representation); </li></ul><ul><li>Wavelet Diagram; </li></ul><ul><li>Vector Representation; </li></ul><ul><li>Phase Space Representation (MOST etc.); </li></ul><ul><li>Other. </li></ul>
    30. 30. The Vector Representation We can represent a tsunami by a vector , with the components x, y, z, t, M e , M t and P x (pixel brightness).
    31. 31. Phase space (Iida) & Infrared Space (Lin) Representations <ul><li>Iida Equation: </li></ul><ul><li>M t = 2.61*Me – 18.44 </li></ul>Lin et al : M t = 9.2299–0.0592*Me
    32. 32. Linear Transformation <ul><li>Define abbreviated vector v IR = (M e , M t IR , N) and v P = (M e , M t P , N), while all other variables are held constant, and N is an axis orthogonal to the M e -M t plane. Then </li></ul><ul><li>v P = R * v IR + T Me + T Mt </li></ul><ul><li>where </li></ul>
    33. 33. CONCLUSION <ul><li>The advantages of our method vis-à-vis DART are: its economy, its reliability, </li></ul><ul><li>its greater availability , and its instantaneous response time . Our procedure can be incorporated into an early warning system which potentially can save lives and property. </li></ul>
    34. 34. Questions, Comments??

    ×