• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content







Total Views
Views on SlideShare
Embed Views



1 Embed 6

http://www.grss-ieee.org 6



Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment
  • From now on, we will launch 20 satellites. Include FY3-2 AM,PM and RM satellite for polar orbit observation; and FY4-EAST1 and EAST2 in Geostationary orbit
  • 我国发展降水测量卫星的主要应用目标是针对台风降水等灾害性天气进行观测,获取台风降水的内部三维物理结构、能量传递等信息,为台风引发的地面降水强度信息获取、台风运动路径预报提供有效信息,达到防灾减灾的目的。除了台风等强降水之外, 能量水循环 降水测量卫星还将监测我国南方发生的雪、冰雹等固态降水以及发生更为频繁的层状降水。 降水测量卫星的主载荷是一部双频降水雷达,将用于获得高精度的降水测量,并作为其它载荷得到的非直接降水估计的交叉定标基准 。微波辐射计将配合降水雷达观测,进行主被动结合的降水反演,同时其大刈幅将提供更频繁的降水测量。可见光红外扫描辐射计用于对台风进行光学成像。有效载荷还有 GPS-MET 掩星探测仪。
  • 降水测量卫星运行在非太阳同步圆轨道,高度约为 408km ,轨道倾角初步定为 28 度。降水雷达分别由 Ku 波段和 Ka 波段降水雷达组成。

On_the_development_of_dualfrq_PR_china(Tiger).ppt On_the_development_of_dualfrq_PR_china(Tiger).ppt Presentation Transcript

  • 1 Development Of Space-borne Rain Radar In China: The First Results From Airborne Dual-Frequency Rain Radar Field Campaign Hu Yang, Honggang Yin, Jian Shang Qiong Wu, Yang Guo, Beidou Zhang National Satellite Meteorological Center July 26,2011 IGARSS’2011
  • Contents
    • Introduction of Meteorological Satellite development in china
    • Development status of FY3(02) dual-frequency Rain Radar
    • Field campaign results
    • conclusion
  • 3 Roadmap of FenYun satellite Science Target: Global all weather, multispectral 3D detection 2006FY-2D 2007FY-3A (TEST) 2010FY-2F 2008FY-2E 2009FY-3B (TEST) 2011FY-3AM1 2012FY-3PM1 2012FY-2G 2013FY-4A (TEST) 2013FY-3RM (TEST) 2015FY-4EAST1 2014FY-3AM2 2017FY-3AM3 2015FY-3PM2 2016FY-4WEST1 2017FY-4MS (TEST) 2018FY-3PM3 2016FY-3RM1 2019FY-3RM2 2019 FY-4EAST2 2020 FY-4WEST2 2020 FY-4MS 2008FY3A
  • 4 Orbit coverage in FY3(02) Era FY3-Am + FY3-PM + FY3-RM will consist polar orbit earth observation constellation, combined with GPM satellites, provide Globe 3-hourly high accuracy precipitation products.
  • 5 Introduction of China Spaceborne Precipitation Radar
    • The main objectives of RM satellite:
    • Consist a Global observation constellation system with FY3-2 AM and PM satellites, as well as GPM satellite;
    • Improve the severe convective system monitoring ability in china together with GPM satellite;
    • Provide 3D precipitation structure over both ocean and land;
    • Improve the sensitivity and accuracy of precipitation measurement over china and arrounding area;
    • Instruments onboard the PR satellite platform
    • Core instrument : Ku/Ka Radar
    • Microwave sounder
    • MWTS : centre frequencies set at 50.3,51.76,52.8,53.596,54.4,54.94,55.50,57.29GHz
    • MWHS : centre frequencies set at 89.0,118.75±0.2, ±0.3, ±0.8, ±1.1, ±2.5, ±3.0, ±5.0,150,183.31±1, ±1.8, ±3, ±4.5, ±7
    • Microwave imager
    • MWRI : Centre frequencies set at 10.65,18.7,23.8,36.5,89GHz, with V/H polarization
  • 6 Main Instrument Characteristics KuPR KaPR Frequency 13.6 GHz 35.5 GHz Scan angle ±20º Horizontal resolution 5 km (nadir) Range resolution 250m Observation range 18 km~-5 km sensitivity 0.5 mm/h 0.2 mm/h Antenna Side lobe level -35 dB - 30dB Range side lobe -70dB -60dB accuracy ≤ ±1 dB Independent sampling number ≥ 64 Calender Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Ku/Ka PR Conceptual Design Preliminary Design/Airborne flight Critical Design Sustaining Design Launch Gound System Conceptual Design System Design System integeration Operation Algorithm Conceptual Design Prototype Development Development Validation
  • 7 7 JS-RM2010 Dual-frequency Rain Radar Field Campaign Ground weather Radar Z Gnd Rain profile Z APR Inversion algorithm APR calibration Attenuation Correction Ze Rain profile Inversion algorithm Attenuation Correction Ze Radar simulator APR rain measurements simulation database TRMM-PR rain products ( 2A25 ) TRMM-PR Z PR
  • 8 ADPR(Ku/Ka) Instrument characteristics Ku Ka Fly height 5km 5km Frequency 13.6GHz 35.5GHz Swath width 3.6km 3.6km Observation range 4km ~ -3km ASL 4km ~ -3km ASL Horizontal resolution 240m 240m Vertical resolution 250m 250m sensitivity 0.25mm/h 0.1mm/h Sample rate 64 64 Beam width 2.9 °× 2.9 ° 2.9 °× 2.9 ° Scan angle range ± 20 ° ± 20 ° Dynamical range ≥ 70dB ≥ 70dB
  • Dual-Frequency Radar Airborne Field Campaign (JS-RM2010) Jun-Oct, 2010 9 Ku Radar Ka Radar
  • 10
  • Ocean surface radar backscattering characteristics 11 11 Comparing with TRMM-PR measurements over ocean surface shows that the loss of antenna radome is obvious, and the attenuation is angle dependence.
  • Calibration accuracy evaluation by using TRMM-PR measurements 12 12 1.Ku radar ocean sigma0 from TRMM-PR 2. Ku band ocean surface roughness parameter from TRMM-PR 3. Ku/Ka ocean surface roughness difference 4. Ka band ocean surface roughness from Ku measurments 5. Ka band ocean surface sigma0 from model ADPR Ku radar Cal/val by using TRMM-PR ADPR Ka Radar cal/val Ocean sigma0 from model computation
  • Antenna radiom Loss correction 13 13 The rms error of model computation is 0.78dB
  • 14 14 ADPR antenna Loss model
  • TRMM-PR Measurements over Test Area 15 15
  • ADPR Calibration Accuracy Evaluation Results 16 16 Mean bias = 0.046
    • Carborne meteorological radar:
      • X-band, 9.375GHz
      • 1.5°
      • Volume scan
      • 150m
    • TRMM PR:
      • Ku-band, 13.6GHz
      • 0.71°
      • Cross-track scan, 49 angle bins per scan
      • 4.3km / 5km, 0.25km
    Satellite-Airplane-Ground Radar Zm Profile comparison -17- Volume Scan
  • 18 Ku band measurements Rain profile measurements comparison with TRMM-PR Ka band measurements
  • 19
    • Time difference is about 40 minutes
    • Measurements from 1.5-5Km above surface is consistent with each other, both in height and Z value;
    • The ADPR derived Ze under 1.5Km is effected by surface return signal.
    ADPR rain profile Comparison with TRMM-PR
  • Airplane-ground comparison -20- Airplane attitude correction Processing procedures
  • Airplane-ground comparison
    • Vertical sections of airborne radar
    • and ground radar
    • Left : airborne Ku/Ka-band precipitation radar
    • Right : carborne X-band meteorological radar
  • Airplane-ground comparison -22- Quantitative comparison results Observation time 2010-10-11, 09:52:06~10:02:24 Matched points 4684 Maximum (dBZ) Ku : 25.77 Ka : 25.07 X : 30.50 Minimum (dBZ) Ku : -7.82 Ka : -10.07 X : 4.00 Mean (dBZ) Ku : 16.38 Ka : 14.55 X : 19.22 RMS Ku vs. Ka : 1.84 Ku vs. X : 6.75 Ka vs. X : 7.51 Correlation coefficient Ku vs. Ka : 0.98 Ku vs. X : 0.53 Ka vs. X : 0.53
  • detection sensitivity -23- [Ku] The minimum detectable rain rate of airborne Ku-band radar is 0.15mm/h, which satisfies the desired performance of 0.25mm/h. [Ka] The minimum detectable rain rate of airborne Ka-band radar is 0.13mm/h, which is a little worse than the desired performance of 0.10mm/h. Given the rain attenuation and the radome’s influence, the sensitivity of Ka-band radar basically satisfies the desired performance.
  • sidelobe -24- [Ku] The sidelobe of Ku-band radar is lower than -60dB, which satisfies the desired performance. [Ka] The sidelobe of Ka-band radar is lower than -50dB, which is a little worse than the desired performance.
  • range resolution -25- [Ku] Actual 6dB range resolution of Ku-band radar is better than 250m, which satisfies the desired performance. [Ka] Actual 6dB range resolution of Ka-band radar is better than 250m, which satisfies the desired performance.
    • The radar reflectivity factor profiles of ADPR and TRMM PR are highly consistent, which proves ADPR’s measuring accuracy.
    • Field Campaign results shows that ADPR basically satisfy the desired performance.
    • The dual-frequency precipitation radar is qualified for the development of future spaceborne dual-frequency precipitation radar in China.
    Conclusion -26-
  • 27 …… Stop Here