AT_MB_MM_IGARSS2011.ppt

429 views
354 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
429
On SlideShare
0
From Embeds
0
Number of Embeds
27
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Geotechnical engineering is the branch of engineering concerned with the engineering behavior of earth materials.
  • The measurement data used in this study are from CanEx-SM10, conducted to support the development and validation of soil moisture algorithms for ESA's SMOS mission, launched in 2009, and NASA's SMAP mission, scheduled to launch in 2014. During CanEx-SM10, NASA/JPL UAVSAR flown on a Gulfstream III aircraft acquired large swaths of fully polarimetric L-band measurements. Vegetation parameters and soil parameters including moisture and texture parameters, roughness properties, and surface temperature were measured at several locations and at times close to the airborne overpasses. Data acquisition included forests, including OJP, young jack pine (YJP), and OBS forests, located north of Prince Albert National Park in Saskatchewan, Canada, which are among BERMS.
  • In this talk, I consider two separate but related problems. The first problem is a forward model, which in our case, is an electromagnetic scattering model.
  • - Durden model does not implement allometric relationships. We use it inside the inversion algorithm. - The properties of large and small branches (dielectric constant, length, radius, density, orientation), leaves (dielectric constant, length, radius, density), trunks (dielectric constant, length, radius, density), soil (volumetric moisture content, roughness RMS height), canopy height, and orientation parameters of small and large branches.
  • The allometric relationships are also based on measurements; any two vegetation geometrical parameters are assumed to be linearly related to each other with coefficients that are calculated based on the actual values.
  • - Durden model does not implement allometric relationships. We use it inside the inversion algorithm. - The properties of large and small branches (dielectric constant, length, radius, density, orientation), leaves (dielectric constant, length, radius, density), trunks (dielectric constant, length, radius, density), soil (volumetric moisture content, roughness RMS height), canopy height, and orientation parameters of small and large branches.
  • - Dielectric constants and hypothetical allometric relationships correspond to an OBS forest (from CanEx-SM10)
  • - Dielectric constants and hypothetical allometric relationships correspond to an OBS forest (from CanEx-SM10)
  • - Dielectric constants and hypothetical allometric relationships correspond to an OBS forest (from CanEx-SM10)
  • - Dielectric constants and hypothetical allometric relationships correspond to an OBS forest (from CanEx-SM10)
  • BERMS: Boreal Ecosystem Research and Monitoring Sites (Canada), study area is at the southern edge of Canada's boreal forest, in the province of Saskatchewan. BERMS program is a joint initiative of Canadian government agencies, universities and other research partners, to study the role that Canadian boreal forest plays in the global carbon budget and climate change. The Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10) is primarily designed to support the ESA’s Soil Moisture and Ocean Salinity (SMOS) validation activities over Land and to develop soil moisture retrieval algorithms in Canada. Boreal forest is a biome characterized by coniferous forests.
  • Loam is soil composed of sand, silt, gravel, and clay in relatively even concentration (about 40-40-10-10% concentration respectively). Silt: sand, mud, etc. that is carried by flowing water and is left at the mouth of a river or in a harbour. /'gravel/: small stones, often used to make the surface of paths and roads /'pɪrəmɪdl/ Moss: a very small green or yellow plant without flowers that spreads over damp surfaces, rocks, trees. Lichen: a very small grey or yellow plant that spreads over the surface of rocks, walls and trees and does not have any flowers. /kə'nɪfərəs/
  • - /tran’sect/ - Vegetation parameters and soil parameters were measured at several locations and at times close to the airborne overpasses.
  • Averaging is to reduce speckle.
  • Mention the unit.
  • In the three-unknown case, use of both co-pol and cross-pol backscattering coefficients results in RMS errors of 0.034 in soil moisture, which, when compared to the two-data-point results, confirms the unreliability of the cross-pol radar data and/or scattering model.
  • AT_MB_MM_IGARSS2011.ppt

    1. 1. Retrieval of Soil Moisture and Vegetation Canopy Parameters With L-band Radar for a Range of Boreal Forests Alireza Tabatabaeenejad, Mariko Burgin , and Mahta Moghaddam Radiation Laboratory Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI, USA
    2. 2. Introduction (1/3) <ul><li>Soil Moisture is of fundamental importance to the study and understanding of </li></ul><ul><li>Cycling of Water & Energy, </li></ul><ul><li>Runoff Potential, Flood Control </li></ul><ul><li>Weather and Climate </li></ul><ul><li>Geotechnical Engineering, </li></ul><ul><li>Soil Erosion </li></ul><ul><li>Agricultural Productivity, </li></ul><ul><li>Drought Monitoring </li></ul><ul><li>Human Health </li></ul><ul><li>(mosquito-transmitted diseases </li></ul><ul><li>in wet areas) </li></ul>/33 Courtesy of ESA
    3. 3. Introduction (2/3) The need to monitor soil moisture on a global scale has motivated the European Space Agency (ESA)'s Soil Moisture and Ocean Salinity (SMOS) mission and the National Aeronautics and Space Administration (NASA)'s Soil Moisture Active and Passive (SMAP) mission. /33 Courtesy of ESA Courtesy of JPL
    4. 4. Introduction (3/3) <ul><li>In this work, </li></ul><ul><li>We study the radar retrieval of soil moisture, as well as </li></ul><ul><li>canopy parameters, in a range of boreal forests. </li></ul><ul><li>The forward model is a discrete scatterer radar model. </li></ul><ul><li>The retrieval is formulated as an optimization problem. </li></ul><ul><li>The optimization algorithm is a global optimization scheme </li></ul><ul><li>known as simulated annealing. </li></ul>/33
    5. 5. Outline <ul><ul><li>Forward Scattering Model for Forested Area </li></ul></ul><ul><ul><li>Inverse Model </li></ul></ul><ul><ul><li>Inversion of Model Parameters </li></ul></ul><ul><ul><ul><li>Forested Area (Synthetic Data) </li></ul></ul></ul><ul><ul><ul><li>Forested Area (CanEx-SM10 Data) </li></ul></ul></ul><ul><ul><li>Conclusion </li></ul></ul>/33
    6. 6. Outline /33 <ul><ul><li>Forward Scattering Model for Forested Area </li></ul></ul><ul><ul><li>Inverse Model </li></ul></ul><ul><ul><li>Inversion of Model Parameters </li></ul></ul><ul><ul><ul><li>Forested Area (Synthetic Data) </li></ul></ul></ul><ul><ul><ul><li>Forested Area (CanEx-SM10 Data) </li></ul></ul></ul><ul><ul><li>Conclusion </li></ul></ul>
    7. 7. Forward Model: Introduction /33 Soil & forest parameters Scattering coefficients Frequency, incidence angle Forward Model
    8. 8. Forward Model: Forest Geometry Forest Geometry /33 * S. L. Durden, J. J. van Zyl, and H. A. Zebker, &quot;Modeling and observation of the radar polarization signature of forested areas,&quot; IEEE Trans. Geosci. Remote Sens. , May 1989. <ul><li>Forward Model: A general discrete scatterer radar model </li></ul><ul><li> by Durden et al. * </li></ul>
    9. 9. Forward Model: Scattering Mechanisms (1/2) The model identifies 4 distinct scattering mechanisms: b : branch bg : branch-ground tg : trunk-ground g : ground /33 * S. L. Durden, J. J. van Zyl, and H. A. Zebker, &quot;Modeling and observation of the radar polarization signature of forested areas,&quot; IEEE Trans. Geosci. Remote Sens. , May 1989. <ul><li>Forward Model: A general discrete scatterer radar model </li></ul><ul><li> by Durden et al. * </li></ul>Canopy Layer Trunk Layer Ground b g bg tg
    10. 10. Forward Model: Scattering Mechanisms (2/2) <ul><li>Forward Model: A general discrete scatterer radar model </li></ul><ul><li> by Durden et al. * </li></ul><ul><li>The total backscattered power, represented by the Stokes matrix, is the </li></ul><ul><li>sum of the powers from all contributing scatterers. </li></ul>/33 * S. L. Durden, J. J. van Zyl, and H. A. Zebker, &quot;Modeling and observation of the radar polarization signature of forested areas,&quot; IEEE Trans. Geosci. Remote Sens. , May 1989. branch contribution branch-ground contribution trunk-ground contribution ground contribution
    11. 11. Forward Model: Parameters /33 <ul><li>The forest floor is modeled as a rough dielectric surface with a layer of </li></ul><ul><li>nearly vertical dielectric cylinders (representing tree trunks) on top of it. </li></ul><ul><ul><li>The soil dielectric constant is related to the soil moisture via the soil type* </li></ul></ul><ul><li>Branches are represented by a layer of randomly oriented cylinders . </li></ul><ul><li>The forward model uses properties of </li></ul><ul><ul><li>large and small branches (dielectric constant, length, radius, density, orientation) </li></ul></ul><ul><ul><li>leaves (dielectric constant, length, radius, density) </li></ul></ul><ul><ul><li>trunks (dielectric constant, length, radius, density) </li></ul></ul><ul><ul><li>soil (volumetric moisture content, roughness RMS height) </li></ul></ul><ul><ul><li>canopy height </li></ul></ul><ul><li>to characterize a forested area. </li></ul>* N.R. Peplinski, F.T. Ulaby, and M.C. Dobson, “Dielectric properties of soils in the 0.3-1.3 GHz range,” IEEE Trans. Geosci. Remote Sens. , vol. 33, no. 3, pp. 803-807, 1995.
    12. 12. Forward Model: Sensitivity /33 <ul><li>Sensitivity of several dBs to soil </li></ul><ul><li>moisture at L-band in the </li></ul><ul><li>presence of large amount of </li></ul><ul><li>vegetation </li></ul><ul><li>Less sensitivity to soil moisture </li></ul><ul><li>as soil moisture increases </li></ul><ul><li>Preserved dynamic range while </li></ul><ul><li>canopy height increases </li></ul><ul><li>Increase in trunk-ground </li></ul><ul><li>double bounce counterbalanced </li></ul><ul><li>by an increase in attenuation by </li></ul><ul><li>trunk layer as trunk density </li></ul><ul><li>increases. </li></ul><ul><li>Dielectric constants correspond to OJP trees </li></ul><ul><li>(CanEx-SM10) and allometric relationships are hypothetical. </li></ul>
    13. 13. Outline /33 <ul><ul><li>Forward Scattering Model for Forested Area </li></ul></ul><ul><ul><li>Inverse Model </li></ul></ul><ul><ul><li>Inversion of Model Parameters </li></ul></ul><ul><ul><ul><li>Forested Area (Synthetic Data) </li></ul></ul></ul><ul><ul><ul><li>Forested Area (CanEx-SM10 Data) </li></ul></ul></ul><ul><ul><li>Conclusion </li></ul></ul>
    14. 14. Inverse Model: Allometric relations <ul><li>The forward model has too many parameters to allow inversion </li></ul>/33 <ul><li>Allometric relations can be based on actual measurements, for example </li></ul><ul><li>Allometric relations are used to relate unknown parameters to each other and reduce the overall number of unknowns </li></ul><ul><li>Ideally, one or two stand parameters can be used as kernels to describe the entire forest stand </li></ul>
    15. 15. Inverse Model: Simulated Annealing (1/2) /33 <ul><li>Simulated annealing uses an analogy between the unknown parameters </li></ul><ul><li>and particles in the annealing process of solids. </li></ul><ul><li>A small randomly-generated perturbation is applied to the current model </li></ul><ul><li>parameters. </li></ul><ul><li>If Δ L<0, the new state is accepted, otherwise it is accepted with probability </li></ul><ul><li>exp(- Δ L /T) -> Metropolis criterion </li></ul><ul><li>This process is repeated at a sequence of decreasing temperatures. </li></ul>
    16. 16. Inverse Model: Simulated Annealing (2/2) /33 Temperature Current State Last accepted point of the chain Best state so far
    17. 17. Inverse Model: Cost Function <ul><ul><li>Cost Function L </li></ul></ul><ul><ul><li>where </li></ul></ul><ul><ul><li>X = state </li></ul></ul><ul><ul><li>pq = polarization </li></ul></ul><ul><ul><li>f = frequency </li></ul></ul><ul><ul><li>θ = incidence angle </li></ul></ul><ul><ul><li>σ  = calculated backscattering coefficients </li></ul></ul><ul><ul><li>d = measured backscattering coefficients </li></ul></ul><ul><ul><li>HH and VV polarizations components are used in the inversion </li></ul></ul>/33
    18. 18. Outline /33 <ul><ul><li>Forward Scattering Model for Forested Area </li></ul></ul><ul><ul><li>Inverse Model </li></ul></ul><ul><ul><li>Inversion of Model Parameters </li></ul></ul><ul><ul><ul><li>Forested Area (Synthetic Data) </li></ul></ul></ul><ul><ul><ul><li>Forested Area (CanEx-SM10 Data) </li></ul></ul></ul><ul><ul><li>Conclusion </li></ul></ul>
    19. 19. Inversion of Model Parameters: Synthetic Data (1/4) <ul><ul><li>Sample inversion for a sample forest using synthetic data and </li></ul></ul><ul><ul><li>hypothetical allometric relationships at L-band for four unknowns </li></ul></ul>/33 <ul><li>d=2.5 m, ρ tr =0.72 #/m 2 , m v =0.25, h=2 cm </li></ul><ul><li>Dielectric constants are from </li></ul><ul><li>CanEx-SM10 (for an OBS forest) and allometric relationships are </li></ul><ul><li>hypothetical. </li></ul><ul><li>Accurate retrieval for all </li></ul><ul><li>unknowns (soil moisture, </li></ul><ul><li>trunk density, canopy height, </li></ul><ul><li>roughness RMS height) </li></ul>
    20. 20. Inversion of Model Parameters: Synthetic Data (2/4) <ul><ul><li>Sample inversion for a sample forest using synthetic data and </li></ul></ul><ul><ul><li>hypothetical allometric relationships at L-band for four unknowns </li></ul></ul>/33 <ul><li>d=2.5 m, ρ tr =0.72 #/m 2 , m v =0.25, h=2 cm </li></ul><ul><li>Dielectric constants are from </li></ul><ul><li>CanEx-SM10 (for an OBS forest) and allometric relationships are </li></ul><ul><li>hypothetical. </li></ul><ul><li>Accurate retrieval for all </li></ul><ul><li>unknowns (soil moisture, </li></ul><ul><li>trunk density, canopy height, </li></ul><ul><li>roughness RMS height) </li></ul>
    21. 21. Inversion of Model Parameters: Synthetic Data (3/4) <ul><ul><li>Sample inversion for a sample forest using synthetic data and </li></ul></ul><ul><ul><li>hypothetical allometric relationships at L-band for four unknowns </li></ul></ul>/33 <ul><li>d=2.5 m, ρ tr =0.72 #/m 2 , m v =0.25, h=2 cm </li></ul><ul><li>Dielectric constants are from </li></ul><ul><li>CanEx-SM10 (for an OBS forest) and allometric relationships are </li></ul><ul><li>hypothetical. </li></ul><ul><li>Accurate retrieval for all </li></ul><ul><li>unknowns (soil moisture, </li></ul><ul><li>trunk density, canopy height, </li></ul><ul><li>roughness RMS height) </li></ul>Absolute error in d = 0 m
    22. 22. Inversion of Model Parameters: Synthetic Data (4/4) <ul><ul><li>Sample inversion for a sample forest using synthetic data and </li></ul></ul><ul><ul><li>hypothetical allometric relationships at L-band for four unknowns </li></ul></ul>/33 Absolute error in h = 0.2 cm <ul><li>d=2.5 m, ρ tr =0.72 #/m 2 , m v =0.25, h=2 cm </li></ul><ul><li>Dielectric constants are from </li></ul><ul><li>CanEx-SM10 (for an OBS forest) and allometric relationships are </li></ul><ul><li>hypothetical. </li></ul><ul><li>Accurate retrieval for all </li></ul><ul><li>unknowns (soil moisture, </li></ul><ul><li>trunk density, canopy height, </li></ul><ul><li>roughness RMS height) </li></ul>
    23. 23. Outline /33 <ul><ul><li>Forward Scattering Model for Forested Area </li></ul></ul><ul><ul><li>Inverse Model </li></ul></ul><ul><ul><li>Inversion of Model Parameters </li></ul></ul><ul><ul><ul><li>Forested Area (Synthetic Data) </li></ul></ul></ul><ul><ul><ul><li>Forested Area (CanEx-SM10 Data) </li></ul></ul></ul><ul><ul><li>Conclusion </li></ul></ul>
    24. 24. Inversion of Model Parameters: Overview <ul><li>The data are from CanEx-SM10 in June 2010. </li></ul><ul><li>Data acquisition included Old Jack Pine, Young Jack Pine, and Old </li></ul><ul><li>Black Spruce forests, located in Saskatchewan, Canada. </li></ul><ul><li>NASA/JPL UAVSAR flown on a Gulfstream III aircraft acquired large </li></ul><ul><li>swaths of fully polarimetric L-band measurements. </li></ul><ul><li>Soil moistures and roughness RMS height are unknowns . </li></ul><ul><ul><li>The other forest parameters are assumed known from ground </li></ul></ul><ul><ul><li>measurement </li></ul></ul>/33
    25. 25. Inversion of Model Parameters: Three forests Old Jack Pine (OJP), Young Jack Pine (YJP), Old Black Spruce (OBS) forests Old Jack Pine: Columnar trees, dry and flat sandy loam ground, densely covered with dry lichen, which is transparent at L-band Young Jack Pine: Pyramidally-shaped trees, very dry and flat sandy ground with short and sparse ground cover Old Black Spruce: Columnar coniferous trees, wet loam ground complicated by a non-uniform moss and organic layer, water puddles, and bushy understory /33
    26. 26. Inversion of Model Parameters: Measurement transects Ground measurements included a transect of 100 m along which several measurements were taken in ~10-m intervals. /33
    27. 27. Inversion of Model Parameters: Results for OJP <ul><ul><li>Inversion of soil moisture at L-band </li></ul></ul><ul><li>Average error (bias) is -0.01 </li></ul><ul><li>RMS error is 0.043 (6m  12m) </li></ul>/33 <ul><li>Average error (bias) is -0.008 </li></ul><ul><li>RMS error is 0.03 (18m  36m) </li></ul>m υ i σ 0 i Σ σ 0 i = σ 0 m υ
    28. 28. Inversion of Model Parameters: Results for YJP <ul><ul><li>Inversion of soil moisture at L-band </li></ul></ul><ul><li>Average error (bias) is 0.014 </li></ul><ul><li>RMS error is 0.02 (6m  12m) </li></ul>/33 <ul><li>Average error (bias) is 0.015 </li></ul><ul><li>RMS error is 0.022 (18m  36m) </li></ul>m υ i σ 0 i Σ σ 0 i = σ 0 m υ
    29. 29. Inversion of Model Parameters: Results for OBS <ul><ul><li>Inversion of soil moisture at L-band </li></ul></ul><ul><li>Average error (bias) is 0.14 </li></ul><ul><li>RMS error is 0.24 (6m  12m) </li></ul>/33 <ul><li>Average error (bias) is 0.92 </li></ul><ul><li>RMS error is 0.16 (18m  36m) </li></ul><ul><li>Average error (bias) is 0.93 </li></ul><ul><li>RMS error is 0.11 (18m  36m) </li></ul>Σ σ 0 i = σ 0 m υ ( □ ) m υ i σ 0 i σ 0 i Σ m υ i = m υ ( * )
    30. 30. Inversion of Model Parameters: Adding more unknowns /33 <ul><ul><li>Adding canopy height and trunk density to the </li></ul></ul><ul><ul><li>unknowns ( four unknowns ) and cross-pol </li></ul></ul><ul><ul><li>backscattering coefficient to the measured data points </li></ul></ul><ul><ul><li>( three data points ), the error in soil moisture would </li></ul></ul><ul><ul><li>be large (0.085 cm 3 /cm 3 for OJP) due to </li></ul></ul><ul><ul><ul><li>Unreliability of the cross-pol radar measurements </li></ul></ul></ul><ul><ul><li>Adding only canopy height to the unknowns ( three </li></ul></ul><ul><ul><li>unknowns ) and using only co-pol data ( two data points ), results in an RMS error of 0.025 cm 3 /cm 3 in soil moisture. </li></ul></ul>
    31. 31. Summary and Conclusion (1/2) /33 <ul><ul><li>L-band retrieval of under-canopy soil moisture as well as </li></ul></ul><ul><ul><li>other canopy parameters using radar data was </li></ul></ul><ul><ul><li>investigated. </li></ul></ul><ul><ul><li>Simulated annealing accurately retrieved soil moisture </li></ul></ul><ul><ul><li>from only a few data points. (synthesize data, four </li></ul></ul><ul><ul><li>unknowns, allometric relationships) </li></ul></ul><ul><ul><li>Inversion was successful for the OJP and YJP sites. </li></ul></ul><ul><ul><li>(CanEx-SM10 data, two unknowns) </li></ul></ul>
    32. 32. Summary and Conclusion (2/2) /33 <ul><ul><li>Error was large for the OBS forest mostly due to </li></ul></ul><ul><ul><ul><li>small sensitivity of the forward model to soil moisture for </li></ul></ul></ul><ul><ul><ul><li>larger moisture values </li></ul></ul></ul><ul><ul><ul><li>possible inaccuracies in the forest parameterization </li></ul></ul></ul><ul><ul><ul><li>complex nature of the forest floor </li></ul></ul></ul><ul><ul><li>L-band radar is capable of retrieving surface soil </li></ul></ul><ul><ul><li>moisture in high-biomass forests (such as OJP) where the soil moisture information is mainly carried by the trunk-ground scattering mechanism . </li></ul></ul>
    33. 33. Questions /33 Thank you for your interest. Do you have any questions? Further questions: Alireza Tabatabaeenejad [email_address] Mariko Burgin [email_address] Mahta Moghaddam [email_address]

    ×