LAND-USE MAPPING USING COARSE RESOLUTION SAR DATA AT THE OBJECT LEVEL EXPLOITING ANCILLARY OPTICAL DATA<br />ALDRIGHI M., ...
OUTLINE<br />Introduction<br />Problem Analysis  <br />ProposedMethods<br />SegmentationTechniques<br />Exploitation of An...
INTRODUCTION<br />The work is subdivided into two different tasks: <br />the first one is the extraction of the human sett...
BUILTAREA – Urban Extraction<br /><ul><li>The  first  step  is  aimed  to  focus  the  analysis  on  human settlements  only
We rely on  the more precise version of  the “Built-Area” algorithm
All of the most recent approaches developed for SAR images rely on spatial indexes and/or a combination to extract human s...
The  indexes  considered  in  this  work  belong  to  two  major categories:  Local  Indicators  of  Spatial  Associations...
Moran’I index,
Geary’c  index,
Getis-Ord’Gi index,
Correlation,
 Variance.</li></ul>Moran<br />Geary<br />BuiltArea algorithm<br />Urban Areas Extraction<br />Getis-Ord<br />Density Anal...
BUILTAREA - Beijing<br />COR<br />5 B.A. INPUTS<br />VAR<br />MORAN<br />3-PARAMETERS SET ACCORDING TO THE ACQUISITION SEN...
SEGMENTATION<br /><ul><li>Besides  the  use  of  spatial  features,  the  second  pillar  of  this research work  is  the ...
Urban environments show a natural structural organization, and they can be seen as block  agglomerates  rather  than  buil...
It makes  sense  to  segment  a SAR image into statistically homogeneous areas and use these regions as a spatial proxy  t...
This operation can be  seen  as  a  clustering process  in which  each object may  be eventually labelled as part of a spe...
CANNY EDGE DETECTOR<br />CANNY EDGE DETECTOR (CED)<br /><ul><li>itdoesn’tneed a-priori statisticalknowledge on regions
limitednumber of parametersestimation
valid for everysegmentorientation</li></ul>Itisbased on fourdifferentphases:<br /> Image Smoothing,<br />Edge Enhancement,...
REGION MERGING<br />REGION MERGING<br />It uses the output of the canny edge detector in order to generate, from the origi...
ImageSeg Algorithm<br />The Berkeley ImageSeg algorithm is an object-based image analyzer algorithm, where compactness, sh...
Spanning Tree Based Algorithm<br />The Marpu algorithm is based on a graph theoretic approach together with a region growi...
PROCESSING CHAIN<br />URBAN EXTENT EXTRACTION<br />LISA AND TEXTURE COMPUTATION<br />BUILTAREA APPLICATION<br />SEGMENTATI...
TRAINING SITES SELECTION<br />Training set ismodifiedaccording to the segmentation.<br />Only the twowidestregionsbelongin...
FEATURES SELECTION<br />In order to maintain the number of featuresas small aspossible, the two more representativefeature...
Upcoming SlideShare
Loading in …5
×

ALDRIGHI_LandUseMappingUsingCoarseResolutionSarDataAtTheObjectLevelExploitingAncillaryOpticalData.pptx

224 views
196 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
224
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

ALDRIGHI_LandUseMappingUsingCoarseResolutionSarDataAtTheObjectLevelExploitingAncillaryOpticalData.pptx

  1. 1. LAND-USE MAPPING USING COARSE RESOLUTION SAR DATA AT THE OBJECT LEVEL EXPLOITING ANCILLARY OPTICAL DATA<br />ALDRIGHI M., GAMBA P.<br />Remote Sensing Team<br />UniversitàdegliStudi di Pavia<br />Italy<br />
  2. 2. OUTLINE<br />Introduction<br />Problem Analysis <br />ProposedMethods<br />SegmentationTechniques<br />Exploitation of Ancillary Optical Data<br /> Case Study: ENVISAT/ASAR, Shanghai<br />Conclusions<br />
  3. 3. INTRODUCTION<br />The work is subdivided into two different tasks: <br />the first one is the extraction of the human settlement extents for different sensors;<br />implementation of “BuiltArea” procedure<br />the second one requires instead the characterization of different land use classes using the same SAR data sets.<br />Different segmentation techniques are compared and exploited in order to identify statistically homogeneous regions and eventually a supervised classification of the selected features allows assigning each region to a class;<br />Tests on the areas of Shanghai show potentials for the use of these techniques in urban area monitoring using moderate resolution SAR;<br />A preliminary study on the exploitation of ancillary optical data for segmentation.<br />
  4. 4. BUILTAREA – Urban Extraction<br /><ul><li>The first step is aimed to focus the analysis on human settlements only
  5. 5. We rely on the more precise version of the “Built-Area” algorithm
  6. 6. All of the most recent approaches developed for SAR images rely on spatial indexes and/or a combination to extract human settlements
  7. 7. The indexes considered in this work belong to two major categories: Local Indicators of Spatial Associations (LISA) and co-occurrence textural features:
  8. 8. Moran’I index,
  9. 9. Geary’c index,
  10. 10. Getis-Ord’Gi index,
  11. 11. Correlation,
  12. 12. Variance.</li></ul>Moran<br />Geary<br />BuiltArea algorithm<br />Urban Areas Extraction<br />Getis-Ord<br />Density Analysis<br />Morphological Operation<br />Correlation<br />Variance<br />
  13. 13. BUILTAREA - Beijing<br />COR<br />5 B.A. INPUTS<br />VAR<br />MORAN<br />3-PARAMETERS SET ACCORDING TO THE ACQUISITION SENSOR (ENVISAT/ASAR):<br />SCALE_LISA: 0.6<br />SCALE_TEXT: 0.4<br />SCALE_URB: 0.1<br />GEARY<br />GETIS-ORD<br />ENVISAT/ASAR APP - Geocoded<br />12,5 m spatial resolution <br />Acquired on August 8° 2009<br />
  14. 14. SEGMENTATION<br /><ul><li>Besides the use of spatial features, the second pillar of this research work is the use of regions instead of single pixels in the final LULC classification.
  15. 15. Urban environments show a natural structural organization, and they can be seen as block agglomerates rather than building units.
  16. 16. It makes sense to segment a SAR image into statistically homogeneous areas and use these regions as a spatial proxy to urban blocks.
  17. 17. This operation can be seen as a clustering process in which each object may be eventually labelled as part of a specific urban land cover class, according to specific criteria.</li></li></ul><li>SEGMENTATION ALGORITHMS<br />In our work, three different segmentation techniques, based on different methodologies, have been compared in order to establish which segmentation approach is more suited for SAR images.<br />SEGMENTATION TECHNIQUES<br />CANNY EDGE DETECTOR<br />BIS<br />(by Berkeley University)<br />Tree-based Algorithm (Dr. Marpu)<br />
  18. 18. CANNY EDGE DETECTOR<br />CANNY EDGE DETECTOR (CED)<br /><ul><li>itdoesn’tneed a-priori statisticalknowledge on regions
  19. 19. limitednumber of parametersestimation
  20. 20. valid for everysegmentorientation</li></ul>Itisbased on fourdifferentphases:<br /> Image Smoothing,<br />Edge Enhancement, <br /> Non-maximasuppression,<br />HysteresisThresholding.<br />PROCESSING CHAIN based on:<br />a denoising algorithm, <br />an edge detection step,<br />a region merging technique<br />
  21. 21. REGION MERGING<br />REGION MERGING<br />It uses the output of the canny edge detector in order to generate, from the original edge detected image, well-defined closed regions corresponding to statistically homogeneous areas. <br />
  22. 22. ImageSeg Algorithm<br />The Berkeley ImageSeg algorithm is an object-based image analyzer algorithm, where compactness, shape and scale parameters may be adjusted in order to obtain the desired level of segmentation.<br />ASAR/ENVISAT<br />APP IMAGE<br />VV-POLARIZATION<br />PIXEL POSTING: 12.5 m<br />
  23. 23. Spanning Tree Based Algorithm<br />The Marpu algorithm is based on a graph theoretic approach together with a region growing technique where the graph is used to guide the merging process. <br />The algorithm is based on building a graph over the image connecting all the objects.<br />The Standard deviation to Mean Ratio (SMR) is used as the homogeneity criterion while merging the objects. Higher value of this ratio will yield bigger objects and vice-versa.<br />
  24. 24. PROCESSING CHAIN<br />URBAN EXTENT EXTRACTION<br />LISA AND TEXTURE COMPUTATION<br />BUILTAREA APPLICATION<br />SEGMENTATION<br />CANNY EDGE DETECTOR<br />ImgSeg<br />Spanning Tree<br />TRAINING SITES SELECTION<br />SITES IDENTIFICATION<br />HOMOGENIZATION – SEGMENTATION BASED<br />FEATURES REDUCTION<br />JEFFRIES-MATUSITA INDEX<br />CLASSIFICATION<br />SUPERVISED CLASSICIATION<br />MAJORITY RULE APPLICATION<br />
  25. 25. TRAINING SITES SELECTION<br />Training set ismodifiedaccording to the segmentation.<br />Only the twowidestregionsbelonging to it are maintained.<br />
  26. 26. FEATURES SELECTION<br />In order to maintain the number of featuresas small aspossible, the two more representativefeature are used for the classificationstep.<br />MoranIndex<br />GearyIndex<br />Getis-OrdIndex<br />Correlazione<br />Jeffries – Matusita Index<br />Varianza<br />LISA Density<br />OriginalValues<br />SpeckleDivergence<br />L.D.I.<br />
  27. 27. MAJORITY RULE APPLICATION<br />Regionscontourssuperimposition over classifiction.<br />Re-classificaitionbased on majorityvoting per region.<br />class1<br />class 2<br />class 3<br />
  28. 28. CASE STUDY – ENVISAT/ASAR Shanghai<br />
  29. 29. CLASSES SELECTION<br />Three different land use classes have been chosen among the CORINE nomenclature and according to the typical Chinese urban environment: <br /><ul><li>commercial areas (CA) (including commercial sites as well as apartment buildings),
  30. 30. residential continuous dense urban fabric (RDF),
  31. 31. green urban areas (GUA) inside the urban extents. </li></ul>Commercial Areas<br />Green Urban Areas<br />Residential Continous Dense Urban Fabric<br />
  32. 32. URBAN AREA EXTRACTION<br />BUILTAREA Urban ExtentsExtraction<br />
  33. 33. SEGMENTATION<br />CannyEdge Detector and RegionMerging<br />A<br />B<br />C<br />D<br />Edge Detection<br />EdgeMap<br />RegionMerging<br />ShapeFiles<br />BIS Algorithm<br />Spanning Tree Algorithm<br />
  34. 34. IMGSEG VS SPANNING-TREE BASED<br />Final Output of the processing chain, after the Minimum Distance classification and the application of the majority rule.<br />LEGEND<br />BLUE: <br />water<br />YELLOW: Commercial Areas<br />RED: Residential C.D.<br />IMGSEG – Final Output<br />Spanning Tree - Final Output<br />Ground Truth<br />ASAR/ENVISAT Image<br />
  35. 35. ACCURACY ASSESSMENT<br />Increasing accuracy<br />CED + RM - Algorithm Accuracy Assessment<br />BIS - Algorithm Accuracy Assessment<br />Spanning tree - Algorithm Accuracy Assessment<br />
  36. 36. ANCILLARY OPTICAL DATA<br /><ul><li>The idea is to perform the segmentation task on the optical images, taking advantage of the characteristics of the segmentation algorithms, originally conceived for optical data.
  37. 37. The optical data hasbeenacquired by the Beijing-1 stellite in june 2009</li></ul>FUSION<br />SAR<br />ASAR/ENVISAT<br />OPTICAL<br />BEIJING-1<br />
  38. 38. ACCURACY ASSESSMENT OVER OPTICAL<br /><ul><li>Classification over SAR
  39. 39. Segmentation over OPTCAL</li></ul>Improvements:<br />~ +6% overall accuracy<br />~ 0.07 k-coeff<br />
  40. 40. CONCLUSIONS<br /><ul><li>A methodology for LU/LC classification of SAR images using a segmentation approach has been proposed and applied to a case study of Shanghai;
  41. 41. Three different segmentation algorithms have been compared over the same area; two of them specific for remote sensed images;
  42. 42. A preliminary analysis of fusion of SAR and optical data (ASAR/ENVISAT + BEIJING-1) has been carried out, showing how the segmentation over optical images provides better results.</li></li></ul><li>FUTURE WORKS<br />- Research is ongoing and polarimetric features (Wishart Classification) are under study as a valid way to improve the accuracy by means of the dual polarimetric (HH and VV) ASAR data available.<br />- Additional classes will be taken into consideration, together with a SAR multitemporal segmentation appraoaches.<br />
  43. 43. Thanks for your attention<br />QUESTIONS?<br />

×