2.
To approximate the change in a function f For a small value of delta x The exact value of the change in f
3.
To approximate f (x) at x = c (x is close to c )
4.
Find the linearization for the function f(t) = 32t – 4t2, a = 2. Use this to approximate f(2.1). L(t) approximates f(2.1) as 49.6. Actual value is 49.56
5.
Local Extrema a function f (x) has a: Local Minimum at x = c if f (c) is the minimum value of f on some open interval (in the domain of f containing c. Local Maximum at x = c if f (c) is the maximum value of f on some open interval containing c.
7.
Definition of Critical Points A number c in the domain of f is called a critical point if either f’ (c) = 0 or f’ (c) is undefined.
8.
Find the extreme values of g(x) = sin x cos x on [0, π]
9.
Critical points: g’(x) = cos 2 x – sin 2 x g’(x) = 0, x = π/4, 3π/4 g(π/4) = ½ , max g(3π/4) = -1/2 , min Endpoints (0, 0), (π, 0)
10.
Assume f (x) is continuous on [a, b] and differentiable on (a, b). If f (a) = f (b) then there exists a number c between a and b such that f’(c) = 0 f(c) f(a) f(b) a c b
11.
Assume that f is continuous on [a, b] and differentiable on (a, b). Then there exists at least one value c in (a, b) such that
12.
If f’(x) > 0, for x in (a, b) then f is increasing on (a, b). If f’(x) < 0 for x in (a, b), then f is decreasing on (a, b) If f’(x) changes from + to – at x = c, f(c) is local maximum If f’(x) changes from – to + at x = c, f(c) is a local minimum
13.
Concavity f is concave up if f’(x) is increasing on (a, b) f is concave down if f’(x) is decreasing on (a, b)
14.
If f’’(x) > 0 for x in (a, b), the f is concave up on (a, b). If f’’(x) < 0 for x in (a, b), the f is concave down on (a, b). Inflection Points – If f’’(c) = 0 and f’’(x) changes sign at x = c then f(x) has a point of inflection at x = c.
15.
F’’(c) > 0, then f (c) is a local minimum F’’(c) < 0, f (c) is a local maximum F’’(c) = 0, inconclusive…may be local max, min or neither
16.
For a Function f (x): Domain/Range of the Function Intercepts (x and y) Horizontal/Vertical Asymptotes End Behavior (Polynomials) Period, frequency, amplitude, shifts (Trigonometric)
17.
For the Derivative f’ (x): Critical points Increasing/Decreasing Intervals Extrema
18.
For the Second Derivative f’’ (x): Points of Inflection Concavity
19.
Application of the Derivative involving finding a maximum or minimum. Example problems on page 227 (#41) and page 228 (#43)
20.
Method for finding approximations for zeros of a function. Uses a number of iterations to locate the zero.
Be the first to comment