The Climate Change Mitigation Potential of the Solar PV Industry: A Life Cycle Perspective
Upcoming SlideShare
Loading in...5
×
 

The Climate Change Mitigation Potential of the Solar PV Industry: A Life Cycle Perspective

on

  • 2,323 views

MSc Thesis, Imperial College London, 2009

MSc Thesis, Imperial College London, 2009

Statistics

Views

Total Views
2,323
Views on SlideShare
2,312
Embed Views
11

Actions

Likes
0
Downloads
53
Comments
0

2 Embeds 11

http://www.linkedin.com 7
http://www.lmodules.com 4

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

The Climate Change Mitigation Potential of the Solar PV Industry: A Life Cycle Perspective The Climate Change Mitigation Potential of the Solar PV Industry: A Life Cycle Perspective Document Transcript

  • IMPERIAL COLLEGE LONDON Faculty of Natural Sciences Centre for Environmental Policy The climate change mitigation potential of the solar PV industry: a life cycle perspective By Gregory Briner A report submitted in partial fulfilment of the requirements for the MSc and/or the DIC. September 2009
  • DECLARATION OF OWN WORK I declare that this thesis: The climate change mitigation potential of the solar PV industry: a life cycle perspective. is entirely my own work and that where any material could be construed as the work of others, it is fully cited and referenced, and/or with appropriate acknowledgement given. Signature:..................................................................................................... Name of student GREGORY BRINER Name of supervisors DR N. J. EKINS-DAUKES and DR T. COCKERILL
  • AUTHORISATION TO HOLD ELECTRONIC COPY OF MSc THESIS Thesis title: The climate change mitigation potential of the solar PV industry: a life cycle perspective Author: Gregory Briner I hereby assign to Imperial College London, Centre of Environmental Policy the right to hold an electronic copy of the thesis identified above and any supplemental tables, illustrations, appendices or other information submitted therewith (the “thesis”) in all forms and media, effective when and if the thesis is accepted by the College. This authorisation includes the right to adapt the presentation of the thesis abstract for use in conjunction with computer systems and programs, including reproduction or publication in machine-readable form and incorporation in electronic retrieval systems. Access to the thesis will be limited to ET MSc teaching staff and students and this can be extended to other College staff and students by permission of the ET MSc Course Directors/Examiners Board. Signed: __________________________ Name printed: Gregory Briner Date: 9th September 2009 View slide
  • Abstract There is currently great interest in the potential of using solar photovoltaic (PV) modules to mitigate greenhouse gas (GHG) emissions from the electricity-generation sector. While GHG emissions from solar PV are negligible during operation, emissions are still produced from the manufacture of solar PV systems when fossil fuels are used to power the supply chain. For this reason it is necessary to consider all stages of the life cycle when assessing the potential of solar PV to mitigate climate change. An overview of solar PV technology types, production processes and PV industry trends is presented. Previous life cycle assessments (LCA) of the levelised GHG emissions (g CO2 kWh-1) and CO2 mitigation potential (tonnes CO2 kWp-1) of crystalline silicon and cadmium telluride PV systems are reviewed and the reasons for discrepancies between them are analysed. A model is developed to determine the sensitivity of levelised GHG emissions and CO2 mitigation potential to technology type, production supply mix, displaced supply mix and irradiance. The levelised GHG emissions are found to be in the range 2-200 g CO2 kWh-1, depending on the assumptions used. The levelised CO2 emissions from transportation are also examined and estimated to lie in the range 0-12 g CO2 kWh-1. The CO2 mitigation potential of crystalline silicon PV systems ranges from –3 tonnes kWp-1 in Norway to 45 tonnes CO2 kWp-1 in Australia. It is found to be positive in all cases where the PV module output is used to displace fossil fuels. This report presents a new metric termed the „annual net CO2 balance‟ (Mt CO2 yr-1), which takes into account the impact of PV industry growth. It is estimated that the annual net CO2 balance of the PV industry was -0.8 Mt CO2 in 2007 and -5 Mt CO2 in 2008. Future projections of this figure for the next 10-20 years are shown, based on different potential scenarios. The net CO2 balance of the PV industry could be improved by (1) curtailment of industry growth, (2) increased production process efficiency, (3) increased use of low-carbon sources of energy for PV production, and (4) stimulation of PV markets in sunny countries with high carbon intensities. The author advocates pursuit of the latter three options. View slide
  • Acknowledgements I would like to thank Ned Ekins-Daukes for both his excellent supervision during my project and for involving me in wider Quantum Photovoltaics Group activities. I would like to thank Tim Cockerill for his helpful advice and guidance. I am also grateful to Konstantinos Theodoropoulos for his input to my project.
  • Table of Contents Abbreviations ........................................................................................................................................... i Parameter Symbols .................................................................................................................................. ii Unit Conversion Guide ............................................................................................................................ ii 1 Introduction ............................................................................................................. 1 1.1 Why this study is needed ........................................................................................................... 1 1.2 Aim and objectives .................................................................................................................... 2 1.3 Potential applications ................................................................................................................ 3 2 Background.............................................................................................................. 5 2.1 Solar PV technology ................................................................................................................. 5 2.2 Selected trends in the solar PV industry .................................................................................... 9 2.3 A life cycle perspective ........................................................................................................... 15 3 Methodology .......................................................................................................... 23 3.1 System boundary ..................................................................................................................... 23 3.2 Model equations ...................................................................................................................... 25 3.3 Limitations of the model ......................................................................................................... 28 4 Results and Analysis ............................................................................................. 30 4.1 Levelised CO2 emissions ......................................................................................................... 30 4.2 CO2 mitigation potential ......................................................................................................... 39 4.3 Annual net CO2 balance .......................................................................................................... 49 5 Discussion ............................................................................................................... 57 5.1 The importance of a life cycle approach ................................................................................. 57 5.2 Technological solutions .......................................................................................................... 57 5.3 Solar PV must not displace renewables or nuclear ................................................................. 60 5.4 Bringing together economic and environmental objectives .................................................... 61 6 Conclusions ............................................................................................................ 64 References ...................................................................................................................... 66 Appendix 1 - Carbon intensity and irradiance by country ....................................... 70 Appendix 2 - Model parameters .................................................................................. 71 Appendix 3 - Derivations of model equations ............................................................. 73
  • Abbreviations a-Si Amorphous Silicon AM Air Mass BoS Balance of Systems (the inverter, cabling and module support structure) CARMA Carbon Monitoring for Action CdTe Cadmium Telluride CIS Copper Indium Selenide CIGS Copper Indium Gallium Selenide CVD Chemical Vapour Decomposition EC European Commission EPBT Energy Payback Time EPIA European Photovoltaic Industry Association EVA Ethylene Vinyl Acetate FBR Fluidised Bed Reactor GHG Greenhouse Gas GIC Global Installed Capacity HVDC High Voltage Direct Current IEA International Energy Agency LCA Life Cycle Assessment MG-Si Metallurgical-grade Silicon mono-Si Monocrystalline Silicon multi-Si Multicrystalline Silicon poly-Si Polycrystalline Silicon PR Performance Ratio PV Photovoltaic STC Standard Test Conditions (1,000 W m-2, 25°C, AM 1.5) UCTE Union for the Co-ordination of Electricity Transmission Wp Peak Watt (the power output under standard test conditions) i
  • Parameter Symbols Symbol Unit Parameter Ce1 g CO2 kWh-1 Carbon intensity of supply mix used in production Ce2 g CO2 kWh-1 Carbon intensity of displaced supply mix Cth g CO2 kWh-1 Carbon intensity of heat generation -1 -1 Cship g CO2 kg km Carbon intensity of transportation by ship -1 -1 Ctruck g CO2 kg km Carbon intensity of transportation by truck dship km Distance travelled by ship dtruck km Distance travelled by truck Ee kWhfinal m-2 Quantity of electricity used in production Eth kWhprimary m-2 Quantity of heat used in production GIC kWp Global installed capacity I kWh m-2 yr-1 Irradiance L yrs Module lifetime -2 m kg m Mass per square meter of module PR - Performance Ratio r - Rate of growth of global installed capacity ηm - Module efficiency ηtd - Efficiency of transmission and distribution network Unit Conversion Guide 1 kWh = 3.6 MJ 1 MJ = 0.278 kWh -2 -1 1 kWh m yr = 0.114 W m-2 1 W m-2 = 8.760 kWh m-2 yr-1 1 tonne = 106 g 1 Mt = 106 tonnes 1 g CO2 = (12/44) g C 1gC = (44/12) g CO2 2 1m = (ηm) kWp 1 kWp = (1/ ηm) m2 1 g CO2 kWp-1 = (ηm) g CO2 m-2 1 g CO2 m-2 = (1/ ηm) g CO2 kWp-1 ii
  • 1 Introduction 1.1 Why this study is needed 1.1.1 The link between climate change mitigation and life cycle assessment Solar photovoltaic (PV) modules have been used to generate electricity from sunlight for many decades. They offer many advantages over conventional forms of electricity generation: they are clean, offer energy security (in the sense that the „fuel‟ is effectively inexhaustible and is not imported from other countries), require little maintenance and can be used in remote locations away from existing power grids. More recently the climate change issue has renewed interest in solar PV modules as a way to cut greenhouse gas (GHG) emissions from the electricity generation sector. Several countries, including Germany, Japan and the USA, now have major financial support schemes in place for solar PV projects as part of their national strategies to reduce GHG emissions. In order to assess the potential of solar PV for mitigating climate change it is necessary to consider the technology from a life cycle assessment (LCA) perspective. The reason for this is that while GHG emissions from solar PV modules are negligible during operation, GHGs are still emitted from the production (and, in some cases, the decommissioning) stages of the life cycle. Solar PV is by no means alone in this respect – GHGs are emitted during the life cycle of all electricity-generating technologies. 1.1.2 Assessing the sensitivity of LCA results using numbers, not words While there are many studies of the levelised life cycle GHG emissions of solar PV in the academic literature, few explore the impact that changing the input parameters would have on the LCA results. Some provide vague qualitative statements about this impact, such as the following two examples from de Wild-Scholten and Alsema (2005) and Fthenakis et al. (2008): 1
  • ‘...analysts should be aware of the large influence that the electricity supply mix for the solar grade silicon process will have on final impact results.’ ‘Other electricity generation and production related-parameters ... are also advancing in parallel and would also result in reduced emissions.’ This project attempts to fill this perceived gap in the literature by providing quantitative data to replace these qualitative statements. How large is the influence of the electricity supply mix on levelised GHG emissions? Which other „production-related parameters‟ are advancing in parallel, and what are the limits to the technical improvements that can be made? And finally, what is the influence of these parameters on the CO2 mitigation potential (tonnes CO2 kWp-1), both for individual modules and for the industry as a whole? To answer these questions, a sensitivity study into the levelised GHG emissions and CO2 mitigation potential of solar PV modules was undertaken to identify the most important factors. Emissions from transportation – an issue that is largely ignored in previous LCA studies on solar PV – were also examined. 1.1.3 New work on the implications of industry growth A new LCA metric termed the „annual net CO2 balance‟ was developed for this project in response to the absence of any metrics in the LCA literature that take into account industry growth. This work on industry growth was ground-breaking because, as far the author is aware, it is the first time anyone has highlighted the dramatic implications of the link between the rate of industry growth and the net CO2 balance of the PV industry. 1.2 Aim and objectives The overall aim of the project was to answer these two questions: 1. What is the potential of the solar PV industry to mitigate greenhouse gas emissions from the electricity generation sector? 2
  • 2. What are the limits or barriers currently preventing the industry from achieving this potential? In order to achieve this overall aim the research objectives were:  To assess the present status of solar PV technologies and determine the quantity of greenhouse gases emitted during the life cycle of these technologies  To assess the life cycle CO2 mitigation potential of solar PV modules that are manufactured and installed in different countries  To design a new life cycle metric for assessing the net CO2 balance of the PV industry that takes into account industry growth  To examine the sensitivity of the net CO2 balance to industry growth rate, carbon intensity of production supply mix and distribution of installed capacity  To provide recommendations for effective ways to improve the net CO2 balance of the PV industry in the future 1.3 Potential applications The Clean Development Mechanism (CDM) and Joint Implementation (JI) programme allow participating nations in the Kyoto Protocol to earn carbon credits by investing in clean energy projects in other countries. The results of this project could be valuable for calculating the climate change mitigation potential of solar PV projects funded via these mechanisms. This project could also be used to revise estimates of the costs of CO2 abatement from solar PV in different countries, which would aid the development of national strategies to mitigate climate change. In most countries electricity from solar PV is currently more expensive than conventional sources. A high level of financial investment is needed to stimulate the solar PV market and expand the PV industry in order to lower the cost of solar PV in the longer term. Unfortunately, several of the countries that can currently afford this initial financial investment, such as Germany and Japan, are not the best places to install solar PV from a climate change mitigation point of view. This project emphasises the 3
  • need for policies that not only stimulate investment in solar PV technology, but also ensure that this technology is deployed in the most beneficial locations first in order to maximise its climate change mitigation potential. 4
  • 2 Background This background chapter is split into three sections:  Solar PV technology This section provides an overview of the different technologies available and how they are manufactured.  Selected trends in the solar PV industry This section presents a few key industry trends that are relevant to a discussion of climate change mitigation by solar PV.  A life cycle perspective This section describes the four stages of LCA and the different life cycle metrics that are available to assess the environmental performance of energy technologies. It contains a literature review of previous LCA studies on solar PV. 2.1 Solar PV technology 2.1.1 Different types of solar PV technology There are several different types of solar PV technology. They fit into three main categories: crystalline silicon, thin film technologies and future technologies. Figure 1 shows the different technology types in each category. 5
  • Figure 1 Different solar PV technology types This project focuses on monocrystalline silicon (mono-Si), multicrystalline silicon (multi-Si), silicon ribbon (ribbon-Si) and cadmium telluride (CdTe) PV modules. Between them these technologies accounted for over 90% of the PV module market in 2007 (IEA, 2008). 6
  • 2.1.2 Production processes polycrystalline silicon Figure 2 Production steps for crystalline silicon PV modules Figure 2 shows how crystalline silicon PV modules are produced. All crystalline silicon PV cells begin life as silica, which is reduced in an electric arc furnace to form metallurgical-grade silicon (MG-Si). The MG-Si is then purified to make polycrystalline silicon (poly-Si). There are several different methods by which MG-Si can be purified and the quality of the resulting poly-Si varies according to the method used, with the most expensive and energy intensive methods producing the highest grade poly-Si. A summary of the different methods available is shown in Table 1. 7
  • Table 1 Poly-Si production processes (Braga et al., 2008; Jungbluth et al., 2008; Mehta and Bradford, 2009) Name of Process Description Energy Demand Purity of Market / kWh kg-1 Poly-Si share (2007) Siemens Decomposition of trichlorosilane (SiHCl3) by 200 High 4% chemical vapour decomposition (CVD) on an inverse U-shaped hot filament at 1,000°C, batch process Modified Siemens Decomposition of silane (SiH4) by CVD on an 140 Medium 61% inverse U-shaped hot filament at 800°C, batch process Fluidised Bed Reactor A gaseous mixture of silane (SiH4) and hydrogen 20 Medium 25% (FBR) flows over a bed of silicon seed grains at 500°C and causes deposition of silicon on the surface of the grains, continuous process Upgraded MG-Si Direct purification of MG-Si which avoids use of ~30 Low 5% silane or trichlorosilane – various physical and chemical routes under development For mono-Si and multi-Si technologies the poly-Si is crystallised or cast into ingots, which are then sawn into wafers. The wafers are etched and metallisation paste is applied in the grooves to make cells. Mono-Si wafers are made from large single crystals and produce high efficiency PV cells (15-18%), but the process used to grow them (termed the Czochralski process) is energy-intensive and expensive. Multi-Si ingots consist of a large number of smaller crystals and require less energy to create, but the resulting PV cells have a lower efficiency (13-15%). For ribbon-Si the purified poly-Si is cut directly into silicon ribbons, which are then used to make cells. This process is the least energy-intensive of all, but the efficiency of the resulting PV cells is also the lowest of the crystalline silicon technologies (12-13%). CdTe cells are made by rapid deposition of a thin film of gaseous cadmium telluride onto a glass substrate, producing cells with an efficiency of around 10%. The cells are then assembled together and encapsulated in glass and ethylene vinyl acetate (EVA) to produce modules. The modules are housed in an aluminium and steel frame. An inverter, cabling and module support structure for roof-mounting complete the PV system. 8
  • 2.2 Selected trends in the solar PV industry 2.2.1 Rapid industry growth and decreasing costs Figure 3 shows how the global solar PV industry has been booming in recent years, with an average annual growth rate of over 40% between 1998 and 2008 (Mehta and Bradford, 2009). Since the last quarter of 2008, however, the growth of most global manufacturing industries has been slowed down by the global economic downturn and the solar PV industry has been no exception. Figure 3 Global solar PV installed capacity 1998-2008 (EPIA, 2009) This rapid industry growth is driving down manufacturing costs. The average cost of a domestic-scale PV system in Germany in 2008 (including both module and installation costs) was 4.4 €/Wp (3.8 £/Wp) (Konstantinos, pers. comm., 2009). This is projected to halve to around 2 €/Wp (1.7 £/Wp) by 2020. While still high, the cost of electricity from solar PV modules is falling more rapidly 9
  • than for any other electricity-generating technology. Nemet (2006) identifies the most important factors driving reductions in module costs since 1980 as increasing plant sizes, increasing module efficiencies and decreasing silicon prices. Boyle (2004) shows that the average cost of electricity from a domestic grid-connected crystalline silicon system in Britain was 34-76p kWh-1 in 2004, but suggests that this could fall to 10-16p kWh-1 by 2020. This is similar to the current price of grid electricity for residential final-users, so if this prediction holds true then grid parity will be achieved for small-scale PV systems offsetting residential electricity demand in the next 10 years. 2.2.2 Distribution of installed capacity The main factor that has determined the present distribution of global installed capacity has been the level of political support and financial incentives offered by different national governments. Figure 4 shows how Germany currently has the largest proportion of global installed capacity on a cumulative basis, despite not being a particularly sunny country, because the German government introduced a generous feed-in tariff for solar PV as part of its „100,000 roofs‟ programme. Strong political support and financial incentives in Spain, the USA and South Korea explain the significant amount of new capacity installed in these countries in 2008, as shown in Figure 5. In Britain, a country with similar irradiance levels to Germany, the level of financial support for solar PV has generally been lower and the cumulative installed capacity reached just 23 MWp in 2008 (IEA, 2009). 10
  • Figure 4 Cumulative installed capacity by country in 2007 Figure 5 Annual installed capacity by country in 2008 (EPIA, (EPIA, 2009). Values shown are in MWp. Total = 9,164 MWp. 2009). Values shown are in MWp. Total = 5,560 MWp. 11
  • The numbers presented in Figure 4 and Figure 5 are for grid-connected panels. In the early days of the PV industry, solar PV was mainly used for off-grid applications such as calculators or to power systems in remote locations such as satellites. However, solar PV has since entered the mainstream electricity market and over 90% of cumulative installed capacity is now grid-connected (IEA, 2008). 2.2.3 Market share of thin film technologies Figure 6 shows how many companies plan to ramp up production of CdTe and other thin film technologies over the next few years, because the relatively low material and energy inputs give them a manufacturing cost advantage over traditional silicon technologies. This is relevant to a discussion of climate change mitigation because it means that the average quantity of electricity used in production will decrease as the proportion of thin film technologies in the cumulative installed capacity increases. Although the market share of crystalline silicon is projected to decrease, the volume of production of crystalline silicon modules will continue to increase in absolute terms. (projected) Figure 6 Global installed capacity by technology type in 2007, and projections for 2012 (EU JRC, 2008; Mehta and Bradford, 2009). The category „Other‟ includes a-Si and CIS thin film technologies. 12
  • 2.2.4 Location of production Table 2 shows how Germany, Japan, the USA and China are currently the leading producers in the PV supply chain. Table 2 Leading PV producers by country in 2007 (IEA, 2008; First Solar, 2009) Stage in supply chain Leading producers Poly-Si USA Japan Germany Ingots and wafers Norway Germany UK Japan Cells and modules China Japan Germany Taiwan CdTe modules USA Germany Malaysia BoS components Germany Austria Japan USA One of the most important stages of the supply chain from a climate change mitigation point of view is the energy-intensive poly-Si production stage. Figure 7 shows the leading poly-Si producers in 2007 and projections for 2012, which show how a large number of new poly-Si production facilities in China, Russia and South Korea are expected to come online between 2007 and 2012. Mehta and Bradford (2009) also predict that by 2012, 50% of crystalline silicon cells will be produced in China and 13
  • Taiwan. This has important implications for the climate change mitigation potential of the solar PV industry because the electricity generation sector in China is currently coal- based and has a high carbon intensity. (projected) Figure 7 Leading poly-Si producers in 2007, and projections for 2012 (Bradford, 2008) 14
  • 2.3 A life cycle perspective 2.3.1 Basic principles of life cycle assessment The aim of a life cycle assessment is to assess the environmental impacts that occur at all stages of the life cycle of a product, covering the complete chain of events from the „cradle‟ to the „grave‟. Figure 8 The four stages of life cycle assessment (ISO 14040, 2006) Figure 8 shows the four stages of a life cycle assessment, as laid out by the International Organisation for Standardisation (ISO). A description of what must be done at each stage is shown in Table 3. 15
  • Table 3 Descriptions of the four stages of life cycle assessment (ISO 14040, 2006) Stage Description Goal and scope definition Define the goal and system boundary of the study. Inventory analysis Construct a model of the product life cycle with all the environmental inflows and outflows at each stage. Impact assessment Calculate the emissions and resource consumption of each component in the life cycle inventory. Interpretation Draw conclusions about the environmental impact of the emissions and resource consumption of the product. 2.3.2 Metrics for evaluating environmental performance There are several different life cycle metrics that may be used to assess the environmental impacts of electricity-generating technologies. These include:  Levelised GHG emissions  CO2 mitigation potential  Greenhouse gas return on investment  Energy payback time  Energy return on investment  SOx, NOx and PM10 emissions  Heavy metal emissions The metrics examined in this project were the levelised GHG emissions, the CO2 mitigation potential and a new metric, the annual net CO2 balance, as these were deemed to be the most useful ones for a discussion of climate change mitigation. It is important to remember that these are only three of the many metrics that may be used to compare the overall environmental performance of electricity-generating technologies. It depends on how the different categories of environmental impact are 16
  • weighted as to what overall policy conclusions can be drawn from any LCA study. 2.3.3 Levelised GHG emissions The levelised GHG emissions (g CO2-eq kWh-1) are the quantity of greenhouse gases emitted at all stages of the life cycle of an electricity-generating technology, divided by its lifetime output of electricity. In the case of the life cycle of a solar PV module, where operational emissions are negligible and the decommissioning step is excluded, the levelised GHG emissions are simply: Capital GHG emissions Levelised GHG emissions  Lifetime output The term „capital GHG emissions‟ is used in this report to refer to the total greenhouse gas emissions, in g CO2-eq m-2, which arise in connection with the production of a solar PV module. There is a wide range of estimates of the levelised GHG emissions for solar PV in the literature. A review of estimates from different countries using a range of government, industry and academic sources was conducted for this project. The results are presented in Figure 9. For comparison, the levelised GHG emissions of other electricity- generating technologies are shown in Figure 10. 17
  • 300 250 Levelised GHG emissions / g CO2 -eq kWh-1 200 150 100 50 CdTe 0 Figure 9 Estimates of levelised GHG emissions of solar PV in the literature 18
  • Figure 10 Levelised GHG emissions of solar PV and other electricity-generating technologies (Alsema et al., 2006; Raugei et al., 2007) 19
  • An examination of the assumptions made in each study revealed that the main reasons for discrepancies between the LCA results for solar PV are:  the system boundaries are different (e.g. the module frame and BoS components are included in some but excluded in others)  different irradiance values have been used  different assumptions have been made about the grid supply mix  old production data from the 1980s or 1990s has been used Pehnt (2006) provides a way of splitting these impacts into two categories by identifying two different types of LCA input parameter: background system parameters and technology-specific parameters. Background system parameters are those that are common to other LCA studies, such as the carbon intensity of electricity generation. A decrease in national carbon intensity will reduce the levelised CO2 emissions of both wind and solar PV, for example, so the overall ranking order of these technologies remains the same. An example of a technology-specific parameter is solar PV module efficiency. An increase in module efficiency reduces the levelised CO2 emissions of solar PV but not wind. Pehnt defines imported impacts on LCA results as those due to changes in background system parameters, and inherent impacts as those due to changes in technology-specific parameters. Examples of imported and inherent impacts on the LCA results for solar PV are shown in Table 4. Building on the work of Pehnt, this project produced quantitative data on both the imported and inherent impacts on LCA results for solar PV. 20
  • Table 4 The difference between imported and inherent impacts Imported Inherent Definition Impact due to a change in a background Impact due to a change in a technology- system component (affects LCA results for specific parameter (affects LCA results other technologies) for solar PV only) Examples Production supply mix Irradiance Displaced supply mix PV module efficiency Transmission and distribution network PV module lifetime efficiency PV module production energy demand 2.3.4 CO2 mitigation potential The levelised GHG emissions alone do not say anything about how much CO2 is „saved‟ (in terms of prevented emissions) by solar PV, because they are the same whether solar PV displaces coal, gas or any other technology. The CO2 mitigation potential metric, on the other hand, takes the carbon intensity of the displaced generator into account and rewards the installation of solar PV in countries that have both a high carbon intensity of electricity generation and high irradiance. The CO2 mitigation potential (tonnes CO2 per kWp installed) is the difference between the greenhouse gases saved and the greenhouse gases emitted over the life cycle of an electricity-generating technology. It is calculated as follows: CO2 mitigation potential = GHGs saved – GHGs emitted One previous estimate of the CO2 mitigation potential of solar PV was found in a technical report by the IEA PV Power Systems Programme (PVPS). This document estimates the CO2 mitigation potential of multi-Si modules in 41 OECD cities (IEA, 2006). The maximum value reported for rooftop systems is 40 tonnes CO2 kWp-1 for Perth in Australia. The lowest reported value is 0.1 tonnes CO2 kWp-1 for Oslo in Norway. These calculations take into account the irradiance and displaced supply mix in the country of installation, but it is not made clear how and where they assume the modules were produced. 21
  • The annual net CO2 balance is the difference between the greenhouse gases saved and the greenhouse gases emitted from the PV industry over one year. There are no previous estimates of the value of this metric, although similar-sounding metrics can be found in the literature. The Solar Generation V report from the European Photovoltaics Industry Association (EPIA) and Greenpeace estimates that the „annual CO2 savings‟ of the PV industry were 6 Mt CO2 in 2007. However, this assessment is potentially misleading as it does not use a life cycle approach – consequently these calculations only consider the CO2 savings made and emissions from the production of solar PV modules are ignored. 22
  • 3 Methodology 3.1 System boundary 3.1.1 Components included The model considers grid-connected, rooftop systems containing mono-Si, multi-Si, ribbon-Si and CdTe modules. The system boundary used in the model was the same as that used in previous LCA studies of solar PV by Fthenakis et al. (2008) and Alsema and de Wild-Scholten (2006). As in these studies, the frame and BoS components are included but the decommissioning stage is excluded due to a lack of reliable energy data for decommissioning operations. Module recycling is likely to become important in the future, and preliminary results from demonstration projects indicate that this could significantly reduce the energy demand of the PV module production process (Refocus, 2009), but this issue is not addressed in this project. 3.1.2 Sources of GHG emissions Reich et al. (2007) divide the GHG emissions from PV module production into direct emissions and indirect emissions. Direct emissions are those that arise from the industrial processes themselves, such as the release of CO2 from quartzite reduction, while indirect emissions are those due to energy consumption during the production process. Figure 11 shows all sources of GHG emissions from PV module production. Only indirect CO2 emissions were included in the model. Reich et al. show that CO2 emissions from quartzite reduction are negligible (~0.5 g CO2-eq kWh-1) and emissions of CF4 during wafer etching are small and difficult to measure, so these were both excluded from the model. 23
  • GHG emissions Indirect GHG Direct GHG emissions from emissions energy use CO2 from Other GHG CO2 emissions quartzite emissions from from energy use reduction energy use CF4 from wafer Materials Process energy Transportation etching production Electricity Silicon carbide Ship (from grid) Electricity Glass Truck (on-site) Heat EVA (on-site) Aluminium and steel Other materials Figure 11 Sources of GHG emissions from solar PV module production. Sources not included in the model are coloured grey. 3.1.3 Life cycle inventory data The production energy data for crystalline silicon PV modules used in the model comes from a life cycle inventory published by de Wild-Scholten and Alsema (2006) as part of the EU-funded CrystalClear project. The dataset was created using a combination of academic literature and data collected from 12 different Western European manufacturers, which was averaged to protect sensitive commercial information. This 24
  • life cycle inventory reflects the status of crystalline silicon technology in 2005-06. The life cycle inventory data for CdTe modules is taken from Fthenakis and Kim (2006). 3.2 Model equations This section introduces the equations used in the model. Detailed derivations of these equations are provided in Appendix 4. A complete list of the parameter symbols used in the equations is provided at the start of this report on page ii. 3.2.1 Levelised CO2 emissions Capital CO 2 emissions Levelised CO2 emissions (g CO2 kWh-1) = Lifetime output E  Capital CO2 emissions =  e   C e1  E th C th  (Equation 1)  td  Lifetime output = I  m PR L (Equation 2) The technology type determines the quantity of electricity used in production (Ee), the quantity of heat used in production (Eth), the module efficiency (ηm) and the module lifetime (L). The performance ratio (PR) is a derating factor which accounts for factors such as partial shading of the module area, snow cover and heat loss. The carbon intensity of electricity generation (Ce1) depends on the generation mix in the country/countries of production, while the carbon intensity of heat generation (Cth) depends on the heat source used (usually natural gas). The irradiance (I) depends on the climate in the country of installation. The efficiency of the transmission and distribution network (ηtd) is included because the electricity consumption data is for electricity at the factory gate, after transmission and distribution losses, while the carbon intensity figures are for electricity generated, before transmission and distribution losses. 25
  • 3.2.2 Levelised CO2 emissions from transportation CO 2 emissions from transportation Levelised GHG emissions (g CO2 kWh-1) = Lifetime output m d ship C ship  d truck C truck  (Equation 3) = I m PR L The distances travelled by ship and by truck (dship and dtruck) are the total distances travelled by these modes of transport during the life cycle. The values used in the model for the carbon intensity of transportation by ship and by truck (Cship and Ctruck, in g CO2 kg-1 km-1) were taken from Krauter and Ruther (2004). The mass per square meter of module (m) is included to convert the units of the numerator from g CO2 kg-1 to g CO2 m-2. 3.2.3 CO2 mitigation potential The following equations for the CO2 mitigation potential apply to individual PV systems. The term „individual‟ is used to reiterate that only emissions from this single module are considered – emissions from the production of other modules due to the growth of the PV industry are not included in this analysis. CO2 mitigation potential (tonnes CO2 kWp-1) = CO2 saved over life cycle – CO2 emitted over life cycle I PR L C e2 CO2 saved over life cycle = (Equation 4)  td  106  Ee    C e1  E th C th  CO2 emitted over life cycle =  td  (Equation 5) m 106 26
  • The CO2 saved is proportional to the carbon intensity of the supply mix which the output from the PV module is displacing in the country of installation (Ce2). The output from the PV module is divided by the transmission and distribution network efficiency (ηtd) because the module is displacing demand at the final user level. A factor of  1  is used to convert the units from g CO m-2 to tonnes CO kW -1.     106   2 2 p  m  The limiting conditions required to achieve a positive CO2 mitigation potential are found by setting CO2 saved = CO2 emitted:  Ee    C e1  E th C th  C e2   td      =  (Equation 6)  td  I m PR L Or, equivalently:  C e2     = Levelised CO2 emissions  (Equation 7)  td  3.2.4 Annual net CO2 balance The annual net CO2 balance is an extension of the CO2 mitigation potential that considers the CO2 emissions of the PV industry as a whole (i.e. a large number of individual PV systems), taking into account the rate of growth of installed capacity. Its design is inspired by the methodology of Lysen and Daey Ouwens (2002), who describe a way to determine the annual net energy balance of the PV industry (see Appendix 4 for details). The annual net CO2 balance is defined as follows: Annual net CO2 balance (tonnes CO2 yr-1) = CO2 saved by cumulative installed capacity that year – CO2 emitted from production of new installed capacity that year 27
  • GIC * I * PR * C e2 (Equation 8) CO2 saved by cumulative installed capacity =  td  10 6  Ee    C e1  E th C th  CO2 emitted from production of new installed capacity = r *GIC*  td   m  106 (Equation 9) Where GIC is the cumulative installed capacity at the start of the year and r is the annual rate of growth of installed capacity. The limiting conditions required to achieve a positive annual net CO2 balance are: I  m PR C e2 r= (Equation 10) E e C e1   td E th C th 3.3 Limitations of the model The model assumes that all modules produced in one year do not begin to save CO2 until the next calendar year, whereas in reality modules are generally installed a month or so after they are produced. It is assumed that the proportion of solar PV in the electricity generation mix remains low over the next 10-20 years. For this reason the model is not iterative and does not reward a high rate of industry growth one year with a decrease in national carbon intensity the next year. The model does not account for the effects of national PV market „saturation‟. Market saturation occurs because in reality there is a limit to the total capacity that may be installed in any one country – this limit may either be economic (due to high installation costs, for example), political (such as the market cap in Spain of 500 MWp for 2009), or technical (such as limits to the proportion of intermittent renewables that may be 28
  • accommodated by the grid). In most countries economic and political limits are much more likely to be reached before technical limits. Once any one of these limits has been reached the national PV market becomes „saturated‟ and PV module suppliers must look elsewhere to sell their modules. If the PV market becomes saturated in a sunny country with high carbon intensity due to an economic or a political barrier, rather than due to a technical barrier, then this could significantly reduce the extent to which the global PV industry achieves its potential for climate change mitigation. This would be an interesting topic for further study. 29
  • 4 Results and Analysis 4.1 Levelised CO2 emissions 4.1.1 Breakdown of levelised GHG emissions Figure 12 and Figure 13 show breakdowns of the levelised CO2 emissions from crystalline silicon and CdTe modules manufactured using the average Western Europe grid mix (480 g CO2 kWh-1, also known as the „UTCE‟ mix) and installed in Southern European irradiance conditions. Figure 12 Breakdown of levelised GHG emissions for crystalline silicon technologies produced in Western Europe (carbon intensity 480 g CO2 kWh-1) and installed in Southern Europe (irradiance 1,700 kWh m-2 yr-1). For ribbon-Si and multi-Si modules, the largest source of CO2 emissions is energy use during the poly-Si production stage. For mono-Si modules, the largest source is energy use during the crystal-growing process in the wafer production stage. The multi-Si wafers on which this production data is based are thinner than mono-Si wafers (240 μm compared to 270 μm). Counter-intuitively, thin wafers currently require more poly-Si per square meter than thicker ones due to greater sawing losses, despite the fact that 30
  • more wafers are recovered per ingot (de Wild-Scholten and Alsema, 2006). This is why the CO2 emissions from poly-Si production for multi-Si modules are slightly higher than those for mono-Si modules. Figure 13 Breakdown of levelised GHG emissions for CdTe modules produced in Western Europe (carbon intensity 480 g CO2 kWh-1) and installed in Southern Europe (irradiance 1,700 kWh m-2 yr-1). 4.1.2 Module efficiency and quantity of electricity used in production Together the module and the quantity of energy used in production can be used to characterise the technology type (assuming that all technology types have a 30-year lifetime and a performance ratio of 0.75). Figure 14 shows how levelised GHG emissions are affected by these two parameters. Indications of where the different technology types lie are shown on the diagram. Reductions in levelised CO2 emissions can be achieved by reducing electricity consumption during production and increasing module efficiency. The parameters shown for future crystalline silicon technologies are based on improvements in the following areas (Alsema, 2000): 31
  •  Increased module efficiency  Decreased wafer thickness  Reduced losses from wafer sawing  Use of FBR poly-Si and upgraded MG-Si feedstock  Improved casting methods such as electromagnetic casting Figure 14 Sensitivity of levelised GHG emissions to module efficiency and quantity of electricity used in production, for modules produced in Western Europe (carbon intensity 480 g CO2 kWh-1) and installed in Southern Europe (irradiance 1,700 kWh m-2 yr-1). 4.1.3 Production and installation in different countries The levelised GHG emissions depend on the carbon intensity of electricity generation in the country of production and the irradiance in the country of installation. A summary of these quantities in different countries is provided in Figure 15 and a table of the values used is provided in Annex 1. The data used here is for 2007 and is taken from the Carbon Monitoring for Action (CARMA, 2008) database. This source was chosen 32
  • for its broad coverage, which includes data for non-OECD countries such as China and India. However, it should be noted that some discrepancies over national carbon intensity values exist in the literature – for example, an annex in an IEA PVPS report (IEA, 2006) quotes the carbon intensity in Japan as 508 g CO2 kWh-1, while in the CARMA database it is quoted as 365 g CO2 kWh-1. These discrepancies mean that some of the labels on the following diagrams could be misplaced, but they do not affect the key findings of this report. Figure 16 shows how the levelised GHG emissions of PV modules depend on where they are produced and where they are installed. For modules produced in countries with low-carbon generation mixes (such as France or Norway) and installed in countries with high irradiance levels (such as Australia), the levelised GHG emissions are 6 - 9 g CO2 kWh-1 for crystalline silicon technologies and < 4 g CO2 kWh-1 for CdTe. For modules produced in coal-burning nations (such as China) and installed in countries with low irradiance levels (such as Germany or the UK), the levelised GHG emissions are 100 - 140 g CO2 kWh-1 for crystalline silicon technologies and 60 g CO2 kWh-1 for CdTe. These two scenarios represent the two extremes. Note that these scenarios assume that all stages of the supply chain are located in one country – in reality different stages of the production process are often carried out in different countries with different carbon intensities. 33
  • Figure 15 Carbon intensity of electricity generation and irradiance in different countries (CARMA, 2008; Energie-Atlas, 2005a; 2005b). 34
  • Figure 16 Sensitivity of levelised CO2 emissions of (a) ribbon-Si, (b) multi-Si, (c) mono-Si, and (d) CdTe modules to carbon intensity of electricity production in the country of production and irradiance in the country of installation. 35
  • 4.1.4 Transportation Figure 17 shows levelised CO2 emissions from the transportation of crystalline silicon and CdTe modules. The CO2 emissions from the shipping of PV modules are negligible, even over large distances. The CO2 emissions from transportation by truck account for almost all of the CO2 emissions from transportation. Figure 17 shows that the method of transportation is a much more important factor than the distance transported in determining the CO2 emissions from transportation. Consequently, exporting PV modules from China to Germany does not necessarily emit more CO2 than installing them within China – in fact the latter scenario may even cause greater CO2 emissions if the modules have to be transported large distances internally by truck. For crystalline silicon the levelised emissions from transportation are typically in the range 0-6 g CO2 kWh-1. For widely dispersed supply chains involving multiple journeys by truck between production stages, the CO2 emissions could be greater. In the future the emissions per km of transportation are likely to decrease in many countries as tighter fuel consumption standards for trucks are introduced. A possible rebound effect from this might be that it becomes cheaper to transport materials long distances by truck due to lower fuel consumption costs. If, on the other hand, fuel prices rise significantly over the next decade or two then this would be expected to have the opposite effect and encourage manufacturers to reduce transportation distances during production and to locate several stages of the supply chain in the same country if possible. Despite requiring much lower volumes of semiconductor material, CdTe modules currently weigh around twice as much as crystalline silicon modules because a thicker layer of glass is used for encapsulation (Fthenakis et al., 2008). This, combined with the lower efficiency of CdTe modules, results in levelised transportation emissions of between 0-14 g CO2 kWh-1 – over twice those of crystalline silicon modules transported the same distance. This means that the inclusion of transportation in the system boundary narrows the advantage of CdTe over crystalline silicon in terms of levelised 36
  • CO2 emissions. Figure 17 Levelised CO2 emissions from transportation of 1 m2 of (a) crystalline silicon, and (b) CdTe modules (irradiance 1,700 kWh m-2 yr-1). 37
  • Summary of Key Findings  The levelised CO2 emissions of CdTe modules are roughly half those of crystalline silicon modules, under the same conditions.  For crystalline silicon modules the largest sources of CO2 emissions are the poly-Si production stage and the crystal-growing stage (for mono-Si).  The levelised CO2 emissions of solar PV vary between 2-200 g CO2 kWh-1 for crystalline silicon modules and 1-100 g CO2 kWh-1 for CdTe, depending on the country of production and the country of installation.  Levelised CO2 emissions from transportation are around 0-6 g CO2 kWh-1 for crystalline silicon and twice as much for CdTe.  The mode of transport is more important than the distance travelled when assessing CO2 emissions from transportation. 38
  • 4.2 CO2 mitigation potential 4.2.1 CO2 saved and CO2 emitted Figure 18 demonstrates how the function (CO2 saved – CO2 emitted) is derived from the cumulative values for the CO2 saved and CO2 emitted over the lifetime of a PV module. The term „CO2 saved‟ here does not mean that the PV module actively reduces the atmospheric concentration of CO2, but refers to the CO2 emissions prevented that would have otherwise occurred had the module not been deployed (due to the reduction of output from an alternative electricity generation technology). The cumulative CO2 emitted appears as a flat horizontal line on the graph because all the life cycle CO 2 emissions occur during production at t=0. Figure 18 Cumulative CO2 savings, cumulative CO2 emissions and the function (CO2 saved – CO2 emitted) over the lifetime of a multi-Si module (Ce1 = Ce2 = 480 g CO2 kWh-1, I = 1,700 kWh m-2 yr-1). Positive values of y indicate CO2 savings, negative values of y indicate CO2 emissions. Figure 19 shows how the function (CO2 saved – CO2 emitted) varies for different technology types. The CO2 payback time, defined as the number of years it takes to save an amount of CO2 equal to that emitted during production, is the point at which 39
  • this function passes through y=0. CdTe modules have the shortest CO2 payback time, currently around one year for modules installed in a sunny location (1,700 kWh m-2 yr-1) and displacing the average Western Europe grid mix, while mono-Si modules have the longest CO2 payback time, at around three years under the same conditions. The CO2 mitigation potential is the value of this function at t=30. The gradient of the graph represents the annual CO2 mitigation potential (tonnes CO2 kWp-1 yr-1). Figure 19 shows that the technology type has a very small impact on the CO2 mitigation potential per kWp of solar PV modules (assuming that all technologies have a 30-year lifetime and PR 0.75). Under the conditions shown, CdTe modules have the greatest CO2 mitigation potential at 19.1 tonnes CO2 kWp-1 while mono-Si modules have the lowest potential at 18.1 tonnes CO2 kWp-1. Note that a 1 kWp CdTe PV system has a greater module area than a 1 kWp crystalline silicon PV system due to its lower conversion efficiency. Figure 19 The function (CO2 saved – CO2 emitted) for individual PV systems with a 30-year lifetime (Ce = 480 g CO2 kWh-1, Cdg = 480 g CO2 kWh-1, I = 1,700 kWh m-2 yr- 1 ). 40
  • 4.2.2 Location of production and location of installation Figure 20 shows how the CO2 mitigation potential of an individual crystalline silicon PV system varies for different combinations of countries of production and installation. There are three parameters in the equation for CO2 mitigation potential (Equation 3) that are location-dependent – the carbon intensity of electricity used in production, the irradiance and the carbon intensity of the displaced supply mix. The carbon intensity of electricity used in production depends on the country of production, while the irradiance and the carbon intensity of the displaced supply mix depend on the country of installation. The greatest CO2 mitigation potential is 45 tonnes CO2 kWp-1 for a module installed in Australia (bar A), which has both high irradiance and a high proportion of coal in the current supply mix. There is reasonable correlation with the estimate of 40 tonnes CO2 kWp-1 for Perth by the IEA (2006). The lowest mitigation potential occurs if a solar PV module is used to displace other low-carbon technologies, such as hydro or nuclear. The worst case scenario is production in China and installation in Norway (bar E), which results in a negative CO2 mitigation potential of -3 tonnes CO2 kWp-1. A comparison of bars B, C and D in Figure 20 shows that the country of installation is a much more important factor than the country of production in determining the CO2 mitigation potential of a 1 kWp system. When the country of installation is kept constant and the country of production is changed (bars B and C), it makes very little difference to the CO2 mitigation potential, but when the country of production is kept constant and the country of installation is changed (bars B and D), the CO2 mitigation potential is reduced by a factor of two. This can be explained by considering the CO2 mitigation potential from an energy payback point of view. The CO2 saved is the lifetime energy output from the module multiplied by the carbon intensity of the displaced supply mix. The CO2 emitted is the energy used in production multiplied by the carbon intensity of the production supply mix. For modern PV modules the lifetime energy output is typically over ten times 41
  • greater than the energy used in production. Therefore the calculation of the CO2 mitigation potential essentially involves taking a large number (the CO2 saved) and subtracting from it a small number (the CO2 emitted). Doubling the value of the small number (by doubling the carbon intensity of the production supply mix) has less of an impact on the result than doubling the large number (by doubling the irradiance or doubling the carbon intensity of the displaced supply mix). This is also the reason why the CO2 mitigation potential per kWp varies so little between technology types, if they are assumed to have the same module lifetime and performance ratio (Figure 19). The module efficiency and quantity of electricity used in production affect the magnitude of CO2 emitted and therefore have little impact on the CO2 mitigation potential. The module lifetime and performance ratio, on the other hand, affect the magnitude of CO2 saved and have a large impact on the CO2 mitigation potential. A summary of parameters and which term they affect is shown in Table 5. Table 5 Parameters used in CO2 mitigation potential calculation CO2 saved CO2 emitted Irradiance (I) Quantity of electricity used in production (Ee) Carbon intensity of displaced supply mix (Ce2) Carbon intensity of electricity used in production (Ce1) Performance ratio (PR) Module efficiency (ηm) Module lifetime (L) 42
  • Irradiance / kWh m-2 yr-1 Displaced supply mix / g CO2 kWh-1 Production supply mix / g CO2 kWh-1 Installation Production Levelised CO2 emissions / g CO2 kWh-1 Figure 20 CO2 mitigation potential of an individual crystalline silicon module with a 30-year lifetime for different combinations of countries of production and installation. 43
  • The levelised CO2 emissions are also shown at the bottom of Figure 20. This is to demonstrate that levelised CO2 emissions are a poor indicator of the climate change mitigation potential of solar PV. This is because they do not account for the carbon intensity of the displaced supply mix. For example, the levelised CO2 emissions for a crystalline silicon PV module produced and installed in China are relatively high, at 89 g CO2 kWh-1, while the levelised CO2 emissions for a module produced and installed in Japan are half as much, at 45 g CO2 kWh-1. Using this information alone, the Japanese case appears more favourable. In fact quite the opposite is true: the CO2 mitigation potential is three times greater in the Chinese case than the Japanese case due to the higher carbon intensity of the displaced supply mix. Levelised CO2 emissions in g CO2 kWh-1 have the advantage that they can be calculated for all electricity-generating technologies (unlike an alternative such as g CO2 m-2) and allow for quick comparison between them. However, their value in a rigorous discussion of the climate change mitigation potential of solar PV is limited. This issue is not limited to solar PV; it applies to all renewables with a location-specific output, such as wind, wave or tidal power. 4.2.3 Case study 1: PV modules produced in China Figure 21 shows all possible values of the CO2 mitigation potential for a PV module produced in China. The point at which CO2 Breakeven is reached is the intersection between the blue and the red areas at the bottom of the chart. If modules are installed in Brazil, France or Norway, the CO2 mitigation potential is negative due to the low carbon intensity of the displaced supply mix in these countries. However, in all other countries where the supply mix displaced is currently fossil fuel based, the CO2 mitigation potential is positive – even in countries of low irradiance such as Germany and the UK. In 2007, 98% of cells and modules produced in China were exported (EU JRC, 2008). However, Figure 21 shows that should China decide to focus on the creation of a domestic PV industry, rather than exporting its modules abroad, then this would have a positive impact in terms of climate change mitigation because the CO2 mitigation 44
  • potential of Chinese modules installed in China is generally higher than for Chinese modules installed in other countries. However, the reverse is true in the case of modules produced in Japan; here greater CO2 savings are generally be made by installing the modules abroad rather than domestically because the national carbon intensity is relatively low. 45
  • Figure 21 CO2 mitigation potential for crystalline silicon PV modules produced in China and installed in different countries. 46
  • 4.2.4 Case study 2: Displacing different components of the supply mix in Germany The chart presented in Figure 21 assumes that the output from solar PV displaces the national supply mix in each country of installation. It concludes, therefore, that the CO2 mitigation potential of solar PV modules installed in Germany is greater than those installed in Japan because the higher carbon intensity of the displaced supply mix in Germany outweighs the difference in climatic conditions. However, one might contest this statement by pointing out that it is actually output from the marginal generator in the supply mix that will be curtailed to make way for the output from solar PV, and this affects the CO2 mitigation potential because the carbon intensity of the marginal generator is different to that of the average supply mix. Figure 22 shows what happens to the CO2 mitigation potential of a solar PV module made in China and installed in Germany if its output displaces different components of the supply mix. It shows that if a PV module in Germany displaces gas, rather than the national supply mix, then its CO2 mitigation potential is reduced by 50% and becomes lower than that of a module installed in Japan. Figure 22 CO2 mitigation potential of a crystalline silicon module made in China and used to displace coal, gas, the national supply mix, nuclear or renewables in Germany. 47
  • A further complication is caused by the fact that the carbon intensity of national supply mixes can vary significantly by month, by day and even by hour. To give an example, in the UK the carbon intensity of the national grid can be as low as 234 g CO 2 kWh-1 in the early hours of the morning during summer or as high as 664 g CO2 kWh-1 on a weekday evening in winter (Earth Notes, 2009). This means it depends on both the month and the time of day as to which marginal generator the output from solar PV is displacing, and the carbon intensity of the displaced marginal generator is certainly not fixed throughout the lifetime of the PV module. Further work is needed in this area to clarify what exactly it is that is being displaced by solar PV in different countries, and to improve how the carbon intensity of the displaced supply mix is treated in CO2 mitigation potential calculations. Summary of Key Findings  The CO2 mitigation potential per kWp varies very little between different technology types.  The CO2 mitigation potential of crystalline silicon modules varies between –3 and 45 tonnes CO2 kWp-1. The most important factors influencing its value are the carbon intensity of the displaced supply mix and the irradiance.  Strictly speaking the carbon intensity of the marginal generator in the displaced supply mix should be used in the CO2 mitigation potential calculation rather than the displaced supply mix average.  Levelised CO2 emissions are a poor indicator of the potential of solar PV modules to mitigate climate change. 48
  • 4.3 Annual net CO2 balance 4.3.1 Difference between the annual net CO2 balance and the CO2 mitigation potential The results presented in the previous section were for individual PV systems, analysed over their 30-year lifetime. In this case the CO2 saved term is generally much larger than the CO2 emitted term. However, the results change if the net CO2 balance of the global installed capacity is analysed over a time period of one year and the effects of industry growth are taken into account. Now the CO2 saved term and the CO2 emitted term are generally much closer in magnitude, so parameters affecting the CO2 emitted term have a much more significant impact on the annual net CO2 balance than they do on the CO2 mitigation potential. A summary of differences between the CO2 mitigation potential and the annual net CO2 balance is shown in Table 6. Table 6 Differences between the CO2 mitigation potential and the annual net CO2 balance CO2 mitigation potential Annual net CO2 balance Unit tonnes CO2 kWp-1 tonnes CO2 yr-1 or tonnes CO2 kWp-1 yr-1 Applies to: Single 1 kWp module The global installed capacity Time period analysed 30 years 1 year Relative magnitude of terms CO2 saved >> CO2 emitted CO2 saved ≈ CO2 emitted Accounts for industry growth No Yes 4.3.2 Location of production and location of installation Figure 23 shows the annual net CO2 balance of the PV industry for different combinations of countries of production and installation. The units of the y-axis are tonnes CO2 kWp-1 yr-1. To calculate the annual net CO2 balance of the industry in tonnes CO2 yr-1 this value is multiplied by the global installed capacity (kWp). The case of 0% growth shows what would happen if production of new PV modules 49
  • were to cease altogether. When multiplied by 30 this gives the „static‟ CO2 mitigation potential results shown previously in Figure 20 (the values in fact vary slightly because in Figure 23 it is assumed that the production emissions from the cumulative installed capacity occurred in a previous year, but the ranking order is the same). When industry growth is introduced, the annual net CO2 balance becomes less favourable because the CO2 savings made by the cumulative installed capacity are cancelled out to some extent by the CO2 emissions from the production of new installed capacity. As the rate of industry growth is increased, the „erosion‟ of the CO2 savings made due to the production of new installed capacity is greater, and in some cases the annual net CO2 balance becomes negative. Cases A, B, D and E demonstrate the dramatic impact of high industry growth for modules produced in China. Due to the high carbon intensity in China, a high industry rate very rapidly erodes the CO2 savings made and results in a low or negative annual net CO2 balance. At 40% growth, the annual net CO2 balance is negative in all cases for PV modules produced in China. Case C is a close approximation to the present situation, as a significant proportion of the global installed capacity is currently both made and installed in Germany. In case C, growth rates of 23% or above result in a negative annual net CO2 balance. It was previously shown that the PV industry had an average annual growth rate of over 40% between 1998 and 2008 (Mehta and Bradford, 2009). Therefore the annual net CO2 balance was almost certainly negative in these years, and this in turn means that the cumulative net CO2 balance of the PV industry is currently negative. This should not be interpreted as an argument against the use of solar PV for climate change mitigation. The point to be made here is that in order to achieve significant CO2 savings in the longer term it will be necessary to accept that the net CO 2 balance of the industry may be low or even negative during the early stages of industry expansion. Due to our widespread dependence on fossil fuels to power nearly all modern production processes this is an unavoidable feature of the transition to a low-carbon economy. 50
  • A B C D E Irradiance / kWh m-2 yr-1 Displaced supply mix / g CO2 kWh-1 Production supply mix / g CO2 kWh-1 Installation Production Figure 23 Annual net CO2 balance (in tonnes kWp-1 yr-1) of the crystalline silicon PV industry at different growth rates for different combinations of countries of production and installation. 51
  • 4.3.3 Industry growth and decarbonisation Figure 24 shows projections for the global solar PV installed capacity between 2010 and 2030 from the IEA Blue scenario (IEA, 2008). The IEA predict that PV industry growth will slow down over the next 15 years but then pick up again after 2025. Figure 24 IEA Blue scenario for global solar PV installed capacity 2010-2030 (IEA, 2008). The weighted average irradiance and weighted average displaced carbon intensity of the cumulative installed capacity in 2008 were 1,200 kWh m-2 yr-1 and 500 g CO2 kWh-1 respectively (see Figure 4). Figure 25 shows what will happen to the annual net CO2 balance in the future if the this distribution of installed capacity remains the same and the industry grows as predicted by the IEA Blue scenario shown above. For each year, the annual net CO2 balance is shown at five different values of production carbon intensity. 52
  • Year Industry growth rate Installed capacity / GWp Irradiance / kWh m-2 yr-1 -1 Displaced carbon intensity / g CO2 kWh Figure 25 Annual net CO2 balance of the solar PV industry 2007-2030, with different values for the carbon intensity used in production. Industry growth rates and installed capacities beyond 2008 are projections from the IEA Blue scenario (IEA, 2008). The upper chart shows the annual net CO2 balance in units of tonnes CO2 kWp-1 yr-1, the lower graph shows it in Mt CO2 yr-1. 53
  • In 2007 and 2008 the annual net CO2 balance was almost certainly negative. Given that the four leading producers in the PV module supply chain - Germany, Japan, the USA and China – have an average carbon intensity between them of around 600 g CO2 kWh-1 it is very unlikely that the average carbon intensity of production was below 500 g CO 2 kWh-1 in these years. A comparison of the red 500 g CO2 kWh-1 bar for 2007 in Figure 25 with the green 30% industry growth bar in case C of Figure 23 shows reasonable agreement, indicating that the net CO2 balance in 2007 was around -0.1 tonnes CO2 kWp-1, or –0.8 Mt CO2 in total. This is markedly different from the claim in the EPIA and Greenpeace report (2008) that 6 Mt CO2 were saved by the PV industry in 2007, and this demonstrates the importance of using a life cycle approach for such calculations. The rate of industry growth of 61% in 2008 was exceptionally high. Assuming an average production carbon intensity of 500 g CO2 kWh-1, the net CO2 balance of the PV industry in 2008 was –5 Mt CO2. However, lower industry growth rates of 20% or less are predicted between 2010 and 2030, and this should result in a positive net CO 2 balance in these years. This does not mean that industry growth itself is undesirable, but rather that it must be balanced with decarbonisation of the electricity used in production and installation of new installed capacity in sunny countries with high carbon intensities. The five different production carbon intensity scenarios shown for each year show the impact of decarbonisation on the annual net CO2 balance. If the production process is powered by renewables or nuclear with CO2 emissions of 100 g kWh-1 or less then the annual net CO2 balance is positive in all cases – even if annual growth is 61%. By 2030 a PV industry powered by renewables or nuclear could have an annual net CO2 balance of over 100 Mt CO2 yr-1. This is good news for the PV industry, as it shows that solar PV could indeed start to achieve significant CO2 savings in the near future. These numbers present a strong case for pursuing rapid decarbonisation of the electricity supply to production facilities. The opposite is true if the production carbon intensity becomes higher, for example if production shifts to Asian countries where manufacturing facilities are powered by 54
  • unabated coal-fired power stations. In this case the annual net CO2 balance is negative for industry growth rates over 16% and in the worse case could reach -32 Mt CO2 yr-1 in 2030. It was shown previously that industry experts predict a rapid increase of PV manufacturing capacity in China over the next few years, particularly for the energy- intensive poly-Si production stage. If their predictions hold true, and if China‟s factories continue to be powered by unabated coal, then this will hamper the transition of the industry from a negative net CO2 balance to a positive one. This model assumes that the technologies used and the geographical distribution of installed capacity remains the same over the next 20 years – that is, crystalline silicon modules installed mainly in Germany, Japan and the USA. In reality these factors will evolve over time: production methods for crystalline silicon will become more efficient, thin film technologies with lower production energy demands are likely to start being produced on a large scale, and policy measures to support solar PV will be introduced in new countries. If the weighted average irradiance or the weighted average displaced carbon intensity increases in the future, due to the stimulation of new PV markets in sunny and coal-based countries such as India, then this would improve the annual net CO2 balance because the „CO2 saved‟ term is proportional to these two parameters. If, on the other hand, these averages decrease in the future, due to the stimulation of a large PV market in countries such as France, then this will have a negative impact on the annual net CO2 balance and it will be longer before the industry achieves its potential to cut CO2 emissions. A factor not taken into account by this model is CO2 emitted due to the construction of new PV module manufacturing facilities. As the cumulative installed capacity approaches the terawatt scale and the annual production volumes become large, this could become an increasingly important factor. It is unlikely that the CO 2 emissions from this source would follow a regular annual trend - production facilities are more likely to be built in rounds when investment conditions are favourable, resulting in large spikes of CO2 emissions every few years. The author knows of no previous studies that have estimated CO2 emissions from new PV production facilities so this would be an interesting area for further study. 55
  • Summary of Key Findings  The annual net CO2 balance is different to the CO2 mitigation potential because it takes into account industry growth.  Higher rates of industry growth result in lower net CO2 balances, particularly if the production carbon intensity is high.  Both the annual and cumulative net CO2 balance of the PV industry has almost certainly been negative over the past 10 years. However, the relatively low industry growth rates predicted for the next 10-20 years are likely to result in positive annual net CO2 balances.  To increase the annual net CO2 balance of the PV industry, PV modules should be manufactured using efficient production processes that use energy from low-carbon sources and installed in sunny countries with high carbon intensities. 56
  • 5 Discussion 5.1 The importance of a life cycle approach A comparison of the results from this project with the „annual CO2 savings‟ claimed by the EPIA and Greenpeace (2008) shows the importance of using a life cycle approach when dealing with CO2 emissions figures. By only considering the CO2 saved by the PV industry and not the CO2 emitted by the production of new modules, the partial analysis presented by the EPIA and Greenpeace gives an overly optimistic impression of the current CO2 balance of the PV industry. If, on the other hand, life cycle studies are based on out-of-date information then this can lead to overly pessimistic impressions of the environmental performance of current PV technologies. These points emphasise the importance of using high quality information to inform the debate about technology options to mitigate climate change. It is also important to select the appropriate life cycle metric, depending on the question being asked. It has been shown, for example, that the levelised CO2 emissions are a poor indicator of the value of solar PV for mitigating climate change, and that the CO2 mitigation potential or annual net CO2 balance are more appropriate life cycle metrics for this purpose. 5.2 Technological solutions 5.2.1 Targets for emerging solar PV technologies This work has clarified the influence of the quantity of electricity used in production and the module efficiency on the levelised CO2 emissions of solar PV. The pace of technological improvement in the PV industry is rapid – the energy efficiency of production processes and module conversion efficiencies are being improved year on year - and this means that LCA studies based on a specific set of input parameters very quickly become out of date. The same is true to some extent for all technologies, but particularly so in the case of solar PV due to the rapid industry expansion in recent years and because a great deal of scope remains for further improvement of the 57
  • technology (unlike more mature technologies like wind where the scope for further improvements in system performance are more limited). This information can be used to set a target for emerging solar PV technologies such as organic solar PV and other thin film technologies, if they aspire to achieve lower levelised CO2 emissions than present crystalline silicon technologies. The overall efficiency of any PV technology can be summarised by the ratio of its production electricity demand to its module conversion efficiency (kWh input per unit module efficiency). The value of this efficiency ratio for crystalline silicon technologies is shown in Table 7. Table 7 Ratios of production electricity demand to module efficiency Technology type Ratio of production electricity demand to module efficiency / kWh per unit module conversion efficiency Mono-Si 36 Multi-Si 31 Ribbon-Si 26 New technologies with an efficiency ratio of 26 kWh per unit module conversion efficiency or below represent an improvement over current crystalline silicon technologies. CdTe achieves this standard, with a ratio of around 16. Note, however, that in the future the ratio for crystalline silicon technologies is expected to decrease further to around 12 (see Figure 14, page 32), so emerging solar PV technologies will be chasing a moving target. 5.2.2 Options for decarbonising process electricity As well as decreasing the quantity of electricity used in production per unit module efficiency obtained, another option for reducing the capital CO2 emissions from PV module manufacture is to decarbonise the electricity used in production. There are three ways in which this could be achieved. The first is to locate PV production facilities in countries where the carbon intensity is already low. Energy-intensive industries tend to be located where electricity prices are low – this can lead to their location in countries with abundant renewable resources, such as Norway or Iceland, but low energy prices 58
  • can also exist in countries with abundant coal reserves. However, it would not be practical to locate all manufacturing facilities in the small number of countries where carbon intensity is already low. The second option is to rapidly decarbonise the national supply mix in other countries. Many countries, both developed and developing, now plan to increase the proportion of renewables in their generation mix to address both climate change and energy security concerns. To give one example, the UK hopes to achieve near complete decarbonisation of the electricity generation sector by 2030 (Committee on Climate Change, 2008). Changing the carbon intensity of the electricity mix has what Pehnt (2006) would call an imported impact on LCA results, as it would improve not only the climate change mitigation potential of solar PV but also all other electricity-generating technologies. The third option is to use on-site generation from renewables to meet a greater proportion of the electricity demand of PV manufacturing facilities. Fthenakis et al. (2008) explore the potential of using solar PV modules themselves for this purpose, creating what they term a „PV Breeder‟. They estimate that using solar PV modules to supply 30% of the electricity needs of production facilities could reduced levelised CO2 emissions by 10%, while the use of solar PV modules together with compressed air storage systems could allow 100% of the electricity needs to be met by solar PV and reduce emissions by up to 68%. The decarbonisation of heat generation by the replacement of natural gas with biomass boilers could also reduce CO2 emissions, although the main focus should be on electricity as this accounts for 96% of CO2 emissions from PV production (see Figure 12). It may be that the production facilities for some electricity generation technologies may be easier to power from onsite renewables than others, which would make decarbonisation in this case an inherent rather than an imported impact. A comparison of the prospects for decarbonising the production facilities of different clean energy technologies using onsite renewables would be a useful area for further study. 59
  • 5.3 Solar PV must not displace renewables or nuclear It has been shown that the CO2 mitigation potential of PV modules is negative if their output is used to displace other low-carbon electricity-generating technologies such as nuclear or other renewables. At present, in most electricity markets, there is no mechanism in place to prevent this from happening. In the UK, for example, while there are various incentives such as the Renewables Obligation and the forthcoming feed-in tariff that aim to encourage uptake of renewables, there is nothing in the electricity trading arrangements that gives solar PV power plants priority access to the grid over fossil fuel power plants. At the current low levels of penetration of renewables this does not yet cause a problem, but at higher penetrations it may become an important issue. In the future there could potentially be conflict between decentralised domestic and utility-scale PV systems in European countries. There is currently much interest in the possibility of building large solar power stations in the Sahara desert and exporting the electricity to Europe via long-distance High Voltage Direct Current (HVDC) lines. If this proposal were to become a reality, then at times of high irradiance during summer - just as utility-scale PV power plants in the desert are coming online - the output from domestic PV systems will increase and demand for imported grid electricity will be reduced. In this scenario, decentralised PV modules are effectively displacing output from PV power plants and this would reduce the CO2 mitigation potential of both PV systems. This point strengthens the case for developing energy storage systems for use in utility-scale PV power plants in deserts to smooth their output profile. The same applies to other renewables, in particular wind and nuclear as these are both used to meet baseload demand. If wind is used to displace nuclear or vice versa then this will reduce the CO2 mitigation potential of these technologies. In addition, if a national grid mix contains a very high proportion of wind then the output from wind farms may occasionally need to be „dumped‟ at times when conditions are windy but demand is low. From a life cycle perspective this has a negative impact on the CO 2 mitigation potential of wind farms as again the output is not being used to displace fossil fuels. The point to be made here is that policies must be developed to ensure that 60
  • the output from renewable generators such as solar PV is not used to displace the output from other low-carbon sources once penetration levels of low-carbon technologies become significant. 5.4 Bringing together economic and environmental objectives 5.4.1 Investing money and carbon into solar PV It is necessary to invest both money and carbon in the development of renewable energy sources such as solar PV now in order to make them cost-competitive with conventional energy sources in the longer term. Money must be invested because production processes are still relatively small in scale and expensive compared to those used in incumbent energy industries, while carbon must be emitted because production facilities are still largely powered by fossil fuels at present. Eventually a return on these investments should be expected. Stimulating the market causes it to expand, leading to cost reductions. Market expansion currently causes CO2 emissions from the production of new solar PV modules, but under the right conditions it will eventually reduce CO2 emissions from the energy sector. The difficult task is drawing the line and deciding how much money and carbon we can afford to „spend‟ now in order to receive greater returns in the long term. PV industry trends are currently determined mainly by economics. Some of the current trends being driven by price signals are also beneficial for climate change mitigation – such as improvement of the energy efficiency of production processes to reduce manufacturing costs – while others conflict with climate change mitigation goals - such as the building of new production facilities powered by unabated coal in Asia. The findings in this report support the view that new financial mechanisms are needed to ensure that the investment decisions made by international PV production companies take into account both economic and environmental factors such as climate change mitigation. In the future it is possible that some major PV exporting nations could shift their focus 61
  • back to domestic markets, perhaps in order to meet renewable energy targets or to stimulate the domestic job market. The implications of such shifts for climate change mitigation would be country-specific – for example, it has been shown that if Chinese PV modules are installed in China rather than exported then this would generally have a positive impact, while the opposite would be true in Germany or Japan. Emissions from transportation are case specific and the findings in this report suggest that there is no guarantee that a reduction in the distances over which modules are traded worldwide would result in a reduction of CO2 emissions from transportation. 5.4.2 International collaboration is needed At present there is a general mismatch between the best places to install solar PV from a CO2 mitigation point of view and the location of financial capacity needed to stimulate the PV industry. This is neatly illustrated by the fact that of the top ten nations spending public money on solar PV research and development (R&D) in 2007, eight have a solar PV CO2 mitigation potential of under 12 tonnes CO2 kWp-1 and three have a negative potential, as shown in Figure 26. Figure 26 Top ten public budgets for solar PV R&D in 2007 and the CO2 mitigation 62
  • potential of solar PV in these countries (IEA, 2008). Taxpayers and electricity consumers in countries such as Germany and Japan are currently stimulating the PV market, expanding it rapidly and driving down costs. Eventually these cost reductions will lead to the penetration of PV into new markets in poorer countries with good solar resources. The problem is the urgency of the climate change issue - if solar PV is to play a significant role in climate change mitigation then the pace of this transition may need to be accelerated, and a high level of international collaboration will be needed to achieve this. One potential solution is for governments in countries such as Germany and Japan to provide financial stimulus packages to expand solar PV markets in poorer countries where the CO2 mitigation potential of the solar PV modules is higher and the cost per tonne of CO2 abated is lower. Such transfers of wealth from rich to poor countries are likely to be a defining feature of future international efforts to both mitigate and adapt to climate change. The forthcoming UNFCCC meeting at Copenhagen in December 2009 would be a good place at which to discuss the creation of mechanisms to ensure in the future that solar PV modules are installed in the most effective places. It is not just national governments that can take action. Individuals can also play a role in ensuring that solar PV modules are installed in countries with the highest CO2 mitigation potentials. For example, instead of installing a domestic solar PV system on their own roof, individuals in Germany and the UK who are willing to spend their disposable income on climate change mitigation could fund the installation of a solar PV system in another country, where it will have a greater impact. The sooner international action is taken to decarbonise electricity supplies and improve the distribution of solar PV installed capacity, the sooner the PV industry will make the transition from being a net emitter to a net saver of CO2. While its long-term potential to cut greenhouse gas emissions from the electricity generation sector is large, solar PV cannot achieve this difficult task alone and simultaneous efforts must be sustained to accelerate development of other low-carbon energy technologies alongside solar PV. 63
  • 6 Conclusions This report found that levelised CO2 emissions for solar PV are in the range 2-200 g CO2 kWh-1 depending on the technology type, the country of production and the country of installation. Levelised CO2 emissions are roughly proportional to the carbon intensity of the supply mix used in production and inversely proportional to irradiance. Crystalline silicon modules manufactured in Western Europe using low-carbon supply mixes and installed in Southern Europe have levelised CO2 emissions of around 40-50 g CO2 kWh-1. The levelised CO2 emissions of CdTe modules are around half those of crystalline silicon modules under the same conditions. These results agree well with previous estimates in the literature. Transportation, which is not included in most previous studies, is estimated to add an additional 0-6 g CO2 kWh-1 for crystalline silicon modules and 0-12 g CO2 kWh-1 for CdTe modules. Although the levelised CO2 emissions of renewable energy technologies are frequently quoted in the literature, their value in discussions of climate change mitigation potential is limited because they are unaffected by the carbon intensity of the displaced supply mix. The CO2 mitigation potential is more valuable because it does take into account the displaced supply mix. The CO2 mitigation potential of crystalline silicon technologies is in the range -3 to 45 tonnes CO2 kWp-1. The energy generated over the lifetime of a solar PV module is over ten times greater than the energy consumed during its manufacture, which means that the irradiance and the carbon intensity of the displaced supply mix are much more important factors in determining the CO2 mitigation potential than the supply mix used in production or the technology type. The CO 2 mitigation potential of PV modules installed in Australia (45 tonnes CO2 kWp-1) is three times greater than PV modules installed in Germany (12 tonnes CO2 kWp-1). If PV modules are used to displace nuclear or renewables then the CO2 mitigation potential is negative. Calculating the displaced carbon intensity during the lifetime of a solar PV module is complicated because the carbon intensity of grid mixes varies by month and by hour. The annual net CO2 balance is a new metric that takes into account both the carbon intensity of the displaced supply mix and industry growth. It calculates the CO 2 saved 64
  • by the total global installed capacity in one year and subtracts from it the CO2 emitted from the production of new modules that year. This is the first time that the link between industry growth and CO2 emissions has been examined. The results show that high levels of industry growth can dramatically erode the CO2 savings made over the course of a year, and the record levels of PV industry growth in recent years have resulting in negative annual net CO2 balances. It is estimated that the annual net CO2 balance was -0.8 Mt CO2 in 2007 and -5 Mt CO2 in 2008 (assuming 500 g CO2 kWh-1 as the average carbon intensity of electricity used in production). The cumulative net CO2 balance of the PV industry is presently negative, but could turn positive over the next 10-20 years as lower industry growth rates give the CO2 balance time to recover. The net CO2 balance of the PV industry could be further improved by decreasing the quantity of electricity used in production, increasing module efficiencies, using low- carbon sources of energy for PV module production and increasing the number of PV modules installed in sunny countries with high carbon intensities. Underlying the present distribution of installed capacity is a mismatch between the location of financial resources and the best places to install solar PV from a climate change mitigation perspective. A high level of international collaboration will be needed to address this challenge and create policies to ensure that the PV industry (1) continues to attract investment, and (2) achieves its potential to mitigate climate change. 6.1.1 Recommendations for Further Research  Calculate the annual net CO2 balance of other low-carbon energy industries  Assess the impact of module recycling on LCA results  Investigate the effects of PV market saturation  Assess CO2 emissions from the construction of new solar PV production faculties  Compare the prospects for using onsite renewables to power the production facilities of different low-carbon energy technologies  Improve the method for estimating the carbon intensity of the supply mix displaced by renewable generators 65
  • References Alsema, E. A. (2000) Energy pay-back time and CO2 emissions of PV systems. Progress in Photovoltaics, 8 (1), 17-25. Alsema, E. A. & Nieuwlaar, E. (2000) Energy viability of photovoltaic systems. Energy Policy, 28 (14), 999-1010. Alsema, E. A. & De Wild-Scholten, M. J. (2006) Environmental Impacts of Crystalline Silicon Photovoltaic Module Production. Presented at 13th CIRP International Conference on Life Cycle Engineering, Leuven, 31 May - 2 June 2006. [Online] Available from: http://www.ecn.nl/docs/library/report/2006/rx06041.pdf [Accessed 11 June 2009]. Alsema, E. A., De Wild-Scholten, M. J. & Fthenakis, V. M. (2006) Environmental Impacts of PV Electricity Generation - A Critical Comparison of Energy Supply Options. Paper presented at the 21st European Photovoltaic Solar Energy Conference, Dresden, 4-8 September 2006. Available from: http://www.ecn.nl/docs/library/report/2006/rx06016.pdf [Accessed 19 May 2009]. Australian Coal Association. (2001) Coal in a sustainable society. Australian Coal Industry Research Programme Report. BERR. (2008) Fuel Mix Disclosure Data Table. [Online] Available from: http://www.berr.gov.uk/energy/markets/electricity-markets/fuel-mix/page21629.html [Accessed 10 June 2009]. Boyle, G. (ed.) (2004) Renewable Energy. Oxford, Oxford University Press. Bradford, T. (2008) Polysilicon: Supply, Demand, & Implications for the PV Industry. Report produced by GreenTech Media Inc. and the Prometheus Institute for Sustainable Development. [Online] Available from: http://www.gtmresearch.com/report/polysilicon-supply-demand-and-implications-for-the-pv- industry [Accessed 23 July 2009]. Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., Mei, P. R. (2008) New processes for the production of solar-grade polycrystalline silicon: A review. Solar Energy Materials and Solar Cells, 92 (4), 418-424. Carbon Trust. (2008) Greenhouse Gas Conversion Factors. [Online] Available from: http://www.carbontrust.co.uk/resource/conversion_factors/default.htm [Accessed 19 June 2009]. CARMA. (2007) Carbon Monitoring for Action. [Online] Available from: http://carma.org/ [Accessed 5 August 2009]. Central Research Institute of Electric Power Industry (CRIEPI). (1995) Energy Technology Life Cycle Analysis that Takes CO2 Emission Reduction Into Consideration. Annual Research Report. [Online] Available from: http://www.webcitation.org/query?url=http%3A%2F%2Fcriepi.denken.or.jp%2Fen%2Fe_publication%2 Fa1995%2Fseika95kankyo23E.html&date=2008-11-01 [Accessed 14 August 2009]. Committee on Climate Change. (2008) Building a Low-Carbon Economy - the UK's contribution to tackling climate change. TSO: London. Available from: http://www.theccc.org.uk/reports/building-a-low- carbon-economy [Accessed 14 July 2009]. CrystalClear. (2009) CrystalClear Project Summary. Available from: http://www.ipcrystalclear.info/Paginas/FinalEvent.aspx [Accessed 16 June 2009]. De Wild-Scholten, M. J. & Alsema, E. A. (2005) Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic Module Production. Presented at Materials Research Society Fall 2005 Meeting, 66
  • November 2005, Boston, USA. [Online] Available from: http://www.ecn.nl/docs/library/report/2006/rx06005.pdf [Accessed 11 June 2009]. De Wild-Scholten, M. J. & Alsema, E. A. (2006) Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic Module Production (Excel spreadsheet). [Online] Available from: http://www.ecn.nl/docs/library/report/2006/c06002-LCI_data-cSiPV-pub-v1.xls [Accessed 11 June 2009]. De Wild-Scholten, M. J. & Alsema, E. A. (2007) Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic System Production: status 2005/2006 (Excel spreadsheet). [Online] Available from: http://www.ecn.nl/docs/library/report/2007/e07026-LCIdata-cSiPV-pubv2_0.xls [Accessed 11 June 2009]. Distances.com. (2009) Flying distances between 325 major airports in the World. [Online] Available from: http://www.distances.com/distance_fly.php [Accessed 5 August 2009]. Dones, R., Heck, T. & Kirschberg, S. (2003) Greenhouse Gas Emissions From Energy Systems: Comparison and Overview. Paul Scherrer Institut Annual Report 2003, Annex IV. [Online] Available from: http://gabe.web.psi.ch/pdfs/Annex_IV_Dones_et_al_2003.pdf [Accessed 5 May 2009] . Earth Notes. (2009) A Note On Variations in UK Grid Electricity CO 2 Intensity with Time. [Online] Available from: http://www.earth.org.uk/note-on-UK-grid-CO2-intensity-variations.html [Accessed 6 September 2009]. Energie-Atlas. (2005a) Yearly solar radiation in North and South America. [Online] Available at: http://www.helpsavetheclimate.com/solar.html [Accessed 5 August 2009]. Energie-Atlas. (2005b) Yearly solar radiation in Europe, Africa, Asia and Oceania. [Online] Available at: http://www.energie-atlas.ch/schools-freemaps-1-2-2.htm [Accessed 5 August 2009]. EPIA. (2009) Global Market Outlook for Photovoltaics Until 2013. Available from: http://www.epia.org/publications/epia-publications.html [Accessed 23 July 2009]. EPIA & Greenpeace. (2008) Solar Generation V – 2008. [Online] Available from: http://www.epia.org/fileadmin/EPIA_docs/documents/EPIA_SG_V_ENGLISH_FULL_Sept2008.pdf [Accessed 28 April 2009]. EU PV Platform. (2007) The Status of the PV Industry. [Online] Available from: http://www.eupvplatform.org/index.php?id=133 [Accessed 22 August 2009]. European Commission. (2003) External Costs: Research results on socio-environmental damages due to electricity and transport. Office for Official Publications of the European Communities, Luxembourg. [Online] Available from: http://www.externe.info/externpr.pdf [Accessed 27 May 2009]. European Commission. (2008) Energy Sources, Production Costs and Performance of Technologies for Power Generation, Heating and Transport. Commission Staff Working Document accompanying the Communication From the Commission To the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Commission of the European Communities. [Online] Available from: http://eur- lex.europa.eu/LexUriServ/LexUriServ.do?uri=SEC:2008:2872:FIN:EN:PDF [Accessed 14 August 2009]. European Commission Joint Research Centre (EC JRC). (2008) PV Status Report 2008. [Online] Available from: http://re.jrc.ec.europa.eu/refsys/html/Recent%20Publications.htm [Accessed 24 July 2009]. ExternE. (1997) ExternE National Implementation Germany. Externalities of Energy European Commission Research Project. [Online] Available from: http://www.webcitation.org/query?url=http%3A%2F%2Fweb.archive.org%2Fweb%2F20061007113502 %2Fexterne.jrc.es%2Fger.pdf&date=2008-10-30 [Accessed 14 August 2009]. 67
  • First Solar. (2009) Fast Facts: Company Overview. [Online] Available from: http://www.firstsolar.com/pdf/FS_Company_FastFacts_MD-5-601-NA.pdf [Accessed 1 September 2009]. Flynn, H. & Bradford, T. (2006) Polysilicon: Supply, Demand, & Implications for the PV Industry. Report produced by the Prometheus Institute for Sustainable Development. Frankl, P., Masini, A., Gamberale, M. & Toccaceli, D. (1998) Simplified life-cycle analysis of PV systems in buildings: Present situation and future trends. Progress in Photovoltaics, 6 (2), 137-146. Frankl, P., Menichetti, E. & Raugei, M. (2005) Deliverable No. 11.2 - RS Ia: Final report on technical data, costs and life cycle inventories of PV applications. Report from the European Commission's NEEDS Project. Available from: http://www.needs- project.org/docs/results/RS1a/RS1a%20D11.2%20Final%20report%20on%20PV%20technology.pdf [Accessed 18 May 2009]. Fthenakis, V. M. & Alsema, E. A. (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004 - early 2005 status. Progress in Photovoltaics, 14 (3), 275-280. Fthenakis, V. M. & Kim, H. C. (2007) Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study. Energy Policy, 35 (4), 2549-2557. Fthenakis, V. M., Kim, H. C. & Alsema, E. A. (2008) Emissions from Photovoltaic Life Cycles. Environ. Sci. Technol., 42 (6), 2168-2174. Hondo, H. (2009) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30 (11-12), 2042-2056. IAEA. (2000) Greenhouse Gas Emissions Of Electricity Generation Chains: Assessing the Difference. IAEA Bulletin 42/2/2000. [Online] Available from: http://www.webcitation.org/query?url=http%3A%2F%2Fwww.iaea.org%2FPublications%2FMagazines %2FBulletin%2FBull422%2Farticle4.pdf&date=2008-11-01 [Accessed 14 August 2009]. IEA. (2006) Compared assessment of selected environmental indicators of photovoltaic electricity in OECD cities. Report from the IEA Photovoltaic Power Systems (PVPS) Task 10. [Online] Available from: http://www.iea-pvps-task10.org/rubrique.php3?id_rubrique=4 [Accessed 12 August 2009]. IEA. (2008) Energy Technologies Perspectives 2008 – Scenarios and Strategies to 2050. ISBN 978-92- 64-04142-4. IEA. (2009) National Survey Report of PV Power Applications in the United Kingdom 2008. Available from: http://www.iea-pvps.org/countries/uk/index.htm [Accessed 19 May 2009]. ISO 14040. (2006) Environmental management - Life cycle assessment -Principles and framework. International Organisation for Standardisation (ISO), Geneva. Jungbluth, N., Tuchschmid, M. & De Wild-Scholten, M. (2008) Life Cycle Assessment of Photovoltaics: Update of ecoinvent data v2.0. Working paper. Available from: http://www.esu- services.ch/cms/fileadmin/download/jungbluth-2008-LCA-PV-web.pdf [Accessed 29 May 2009]. Krauter, S. & Ruther, R. (2004) Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renewable Energy, 29 (3), 345-355. Lysen, E. & Daey Ouwens, C. (2002) Energy effects of the rapid growth of PV capacity and the urgent need to reduce the energy payback time. Paper presented at the PV in Europe, From PV Technology to Energy Solutions Conference, Rome, 7-11 October 2002 . Mehta, S. & Bradford, T. (2009) PV Technology, Production and Cost, 2009 Forecast: The Anatomy of a Shakeout. Report produced by GreenTech Media Inc. and the Prometheus Institute for Sustainable 68
  • Development. [Online] Available from: http://www.gtmresearch.com/report/pv-technology-production- and-cost-2009-forecast [Accessed 23 July 2009]. Nemet, G. F. (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy, 34 (17), 3218-3232. Pacca, S., Sivaraman, D. & Keoleian, G. A. (2007) Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy, 35 (6), 3316-3326. Parliamentary Office of Science and Technology (POST). (2006) Carbon Footprint of Electricity Generation. Available from: http://www.parliament.uk/documents/upload/postpn268.pdf [Accessed 10 June 2009]. Pearce, J. M. (2008) Limitations of Greenhouse Gas Mitigation Technologies Set By Rapid Growth and Energy Cannibalism. Paper presented at the Climate 2008 Conference. Available from: http://www.climate2008.net/?a1=pap&cat=1&e=61 [Accessed 21 May 2009]. Pehnt, M. (2006) Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31 (1), 55-71. Raugei, M., Frankl, P., Alsema, E. A., De Wild-Scholten, M. J., Fthenakis, V. M. & Kim, H. C. (2007) Life Cycle Assessment of Present and Future Photovoltaic Systems. Presentation given at the 'Expectations and Advanced Technologies in Renewable Energy' AIST Symposium, Chiba, Japan, 11 October 2007. Refocus. (2009) End-of-life PV: then what? - Recycling solar PV panels. 3 August 2009. [Online] Available from: http://www.renewableenergyfocus.com/view/3005/endoflife-pv-then-what-recycling- solar-pv-panels/ [Accessed 13 August 2009, requires registration]. Reich, N. H., Alsema, E. A., van Sark, W. G. J. H. M. & Nieuwlaar, E. (2007) CO2 Emissions of PV in the Perspective of a Renewable Energy Economy. Paper presented at the 22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007. [Online] Available from: http://igitur- archive.library.uu.nl/chem/2008-0506-201407/UUindex.html [Accessed 15 May 2009] . Reich-Weiser, C., Dornfeld, D. A. & Horne, S. (2008b) Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems. [Online] Available from: http://www.me.berkeley.edu/~corinne/IEEE_PV_May_2008.pdf [Accessed 13 May 2009]. Theodoropoulos. K. (2009) MSc Sustainable Energy Futures, Imperial College London. (Personal Communication, 27th August 2009). Timeanddate.com. (2009) Distance Calculator. Available from: http://www.timeanddate.com/worldclock/distance.html [Accessed 23 July 2009]. Vattenfall. (1999) Vattenfall’s Life Cycle Studies of Electricity. [Online] Available from: http://www.webcitation.org/query?url=http%3A%2F%2Fbarsebackkraft.se%2Ffiles%2Flifecycle_studies .pdf&date=2008-11-01 [Accessed 14 August 2009]. 69
  • Appendix 1 - Carbon intensity and irradiance by country Table 8 Carbon intensity of electricity generation and irradiance in different countries, in order of decreasing carbon intensity (CARMA, 2008; Energie-Atlas, 2005a; 2005b) Country Carbon intensity of electricity Irradiance / kWh m-2 yr-1 generation (2007) / g CO2 kWh-1 Poland 1002 1000 Australia 891 2100 China 868 1500 India 805 2000 Czech Republic 742 1100 Indonesia 662 1700 Germany 612 1000 USA 611 1700 Taiwan 570 1500 UK 557 1000 Portugal 550 1700 Spain 487 1700 Russia 484 900 South Korea 444 1300 Italy 429 1500 Japan 365 1300 Belgium 317 1000 Canada 213 1200 France 88 1300 Brazil 50 1800 Norway 5 800 70
  • Appendix 2 - Model parameters Table 9 Model parameters Parameter Symbol Ribbon-Si Multi-Si Mono-Si CdTe Unit Carbon intensity of heat generation Cth 185 185 185 185 g CO2 kWh-1 Carbon intensity of transportation by ship Cship 0.001 0.001 0.001 0.001 g CO2 kg-1 km-1 Carbon intensity of transportation by truck Ctruck 0.35 0.35 0.35 0.35 g CO2 kg-1 km-1 Quantity of electricity used in production (all Ee 296 407 498 143 kWhfinal m-2 stages) Quantity of heat used in production Eth 38 65 59 0 kWhprimary m-2 Module lifetime L 30 30 30 30 yrs Mass per square meter of module m 46 46 46 92 kg m-2 Performance Ratio PR 0.75 0.75 0.75 0.75 - Module efficiency ηm 11.5% 13.2% 14.0% 9.0% - Efficiency of transmission and distribution ηtd 0.92 0.92 0.92 0.92 - network Table 10 Emissions factors for electricity and heat generation (BERR, 2008; Carbon Trust, 2008). The values for electricity-generating technologies refer to operational emissions, not life cycle emissions. Energy Source g CO2 kWhe-1 g CO2 kWhth- 1 Coal 910 - Natural gas 360 185 Nuclear 0 - Renewables 0 - Other 610 - 71
  • 72
  • Appendix 3 - Derivations of model equations Equation 4 CO2 saved over life cycle = Lifetime output * Carbon intensity of displaced supply mix * conversion factor (to convert from g CO2 m-2 to tonnes CO2 kWp-1)  I  PR L   1  CO2 saved over life cycle =  m   * C e2  *    106     td   m  I PR L C e2 CO2 saved over life cycle =  td  106 Equation 5 CO2 emitted over life cycle = Capital CO2 emissions * conversion factor  E   1  CO2 emitted over life cycle =   e C e1  E th C th         10 6    td   m   Ee    C e1  E th C th  CO2 emitted over life cycle =  td  m 106 Equation 6 The limiting conditions required to achieve a positive CO2 mitigation potential are found by setting CO2 saved = CO2 emitted: 73
  •  Ee    C e1  E th C th  =  td  I PR L C e2  td  106 m 106 which is rearranged to give:  Ee    C e1  E th C th  C e2   td      =   td  I m PR L Equation 7 Substituting the equation for levelised CO2 emissions (Equations 1 and 2) into the above gives:  C e2     = Levelised CO2 emissions   td  Equations 8 - 10 In any one year the CO2 (in tonnes) saved by the global installed capacity (GIC, in kWp) is: CO2 saved that year = GIC * CO2 saved per kWp per year GIC * I * PR * C e2 CO2 saved =  td  10 6 Assume that in the same year the industry produces a further r * GIC of modules, where r is the rate of growth of global installed capacity. The CO2 emitted by the production of these new modules is: 74
  • CO2 emitted that year = r * GIC * capital CO2 emissions per kWp  Ee    C e1  E th C th  CO2 emitted = r *GIC*  td   m  106 These equations can be divided by GIC to convert from tonnes CO2 yr-1 to tonnes CO2 kWp-1 yr-1, i.e. to give a number that is independent of the initial installed capacity. The limiting conditions required to achieve a positive annual net CO2 balance are: CO2 saved = CO2 emitted  Ee    C e1  E th C th  = r *GIC*  td  GIC * I * PR * C e2  td  10 6  m  106 I  m PR C e2 r= E e C e1   td E th C th 75