Bio sworking


Published on

1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Bio sworking

  1. 1. BIOS<br />
  2. 2. Basic input output system <br />One of the most common uses of Flash memory is for the basic input/output system of your computer, commonly known as the BIOS (pronounced "bye-ose"). <br />On virtually every computer available, the BIOS makes sure all the other chips, hard drives, ports and CPU function together. <br />Every desktop and laptop computer in common use today contains a microprocessor as its central processing unit. <br />The microprocessor is the hardware component. <br />To get its work done, the microprocessor executes a set of instructions known as software You are probably very familiar with two different types of software: <br />The operating system - The operating system provides a set of services for the applications running on your computer, and it also provides the fundamental user interface for your computer. Windows 98 and Linux are examples of operating systems. <br />The applications - Applications are pieces of software that are programmed to perform specific tasks. On your computer right now you probably have a browser application, a word processing application, an e-mail application and so on. You can also buy new applications and install them. <br />It turns out that the BIOS is the third type of software your computer needs to operate successfully. In this article, you'll learn all about BIOS -- what it does, how to configure it and what to do if your BIOS needs updating. <br />
  3. 3. Work of bios <br />The BIOS software has a number of different roles, but its most important role is to load the operating system. <br />When you turn on your computer and the microprocessor tries to execute its first instruction, it has to get that instruction from somewhere. <br />It cannot get it from the operating system because the operating system is located on a hard disk, and the microprocessor cannot get to it without some instructions that tell it how.<br /> The BIOS provides those instructions. Some of the other common tasks that the BIOS performs include: <br />A power-on self-test (POST) for all of the different hardware components in the system to make sure everything is working properly <br />Activating other BIOS chips on different cards installed in the computer <br />For example, SCSI and graphics cards often have their own BIOS chips. <br />Providing a set of low-level routines that the operating system uses to interface to different hardware devices - It is these routines that give the BIOS its name. <br />They manage things like the keyboard, the screen, and the serial and parallel ports, especially when the computer is booting. <br />Managing a collection of settings for the hard disks, clock, etc. <br />
  4. 4. The BIOS is special software that interfaces the major hardware components of your computer with the operating system. <br />It is usually stored on a Flash memory chip on the motherboard, but sometimes the chip is another type of ROM. <br />When you turn on your computer, the BIOS does several things. This is its usual sequence: <br />Check the CMOS Setup for custom settings <br />Load the interrupt handlers and device drivers <br />Initialize registers and power management <br />Perform the power-on self-test (POST) <br />Display system settings <br />Determine which devices are bootable <br />Initiate the bootstrap sequence <br />The first thing the BIOS does is check the information stored in a tiny (64 bytes) amount of RAM located on a complementary metal oxide semiconductor (CMOS) chip. <br />The CMOS Setup provides detailed information particular to your system and can be altered as your system changes. <br />The BIOS uses this information to modify or supplement its default programming as needed. <br />Interrupt handlers are small pieces of software that act as translators between the hardware components and the operating system. <br />For example, when you press a key on your keyboard, the signal is sent to the keyboard interrupt handler, which tells the CPU what it is and passes it on to the operating system. <br />The device drivers are other pieces of software that identify the base hardware components such as keyboard, mouse, hard drive and floppy drive. <br />Since the BIOS is constantly intercepting signals to and from the hardware, it is usually copied, or shadowed, into RAM to run faster. <br />
  5. 5. Booting the computer<br />Booting the Computer<br />Whenever you turn on your computer, the first thing you see is the BIOS software doing its thing. On many machines, the BIOS displays text describing things like the amount of memory installed in your computer, the type of hard disk and so on. It turns out that, during this boot sequence, the BIOS is doing a remarkable amount of work to get your computer ready to run. This section briefly describes some of those activities for a typical PC. After checking the CMOS Setup and loading the interrupt handlers, the BIOS determines whether the video card is operational. Most video cards have a miniature BIOS of their own that initializes the memory and graphics processor on the card. If they do not, there is usually video driver information on another ROM on the motherboard that the BIOS can load. <br />Next, the BIOS checks to see if this is a cold boot or a reboot. It does this by checking the value at memory address 0000:0472. A value of 1234h indicates a reboot, and the BIOS skips the rest of POST. Anything else is considered a cold boot. <br />If it is a cold boot, the BIOS verifies RAM by performing a read/write test of each memory address. It checks the PS/2 ports or USB ports for a keyboard and a mouse. It looks for a peripheral component interconnect (PCI) bus and, if it finds one, checks all the PCI cards. If the BIOS finds any errors during the POST, it will notify you by a series of beeps or a text message displayed on the screen. An error at this point is almost always a hardware problem. <br />The BIOS then displays some details about your system. This typically includes information about: <br />The processor <br />The floppy drive and hard drive <br />Memory <br />BIOS revision and date <br />Display <br />Any special drivers, such as the ones for small computer system interface (SCSI) adapters, are loaded from the adapter, and the BIOS displays the information. <br />The BIOS then looks at the sequence of storage devices identified as boot devices in the CMOS Setup. "Boot" is short for "bootstrap," as in the old phrase, "Lift yourself up by your bootstraps." <br />Boot refers to the process of launching the operating system. <br />The BIOS will try to initiate the boot sequence from the first device. <br />If the BIOS does not find a device, it will try the next device in the list.<br /> If it does not find the proper files on a device, the startup process will halt.<br />
  6. 6. Configuring BIOS<br />In the previous list, you saw that the BIOS checks the CMOS Setup for custom settings. Here's what you do to change those settings. <br />To enter the CMOS Setup, you must press a certain key or combination of keys during the initial startup sequence.<br />Most systems use "Esc," "Del," "F1," "F2," "Ctrl-Esc" or "Ctrl-Alt-Esc" to enter setup. <br />There is usually a line of text at the bottom of the display that tells you "Press ___ to Enter Setup." <br />Once you have entered setup, you will see a set of text screens with a number of options. Some of these are standard, while others vary according to the BIOS manufacturer. Common options include: <br />System Time/Date - Set the system time and date <br />Boot Sequence - The order that BIOS will try to load the operating system <br />Plug and Play - A standard for auto-detecting connected devices; should be set to "Yes" if your computer and operating system both support it <br />Mouse/Keyboard - "Enable Num Lock," "Enable the Keyboard," "Auto-Detect Mouse"... <br />Drive Configuration - Configure hard drives, CD-ROM and floppy drives <br />Memory - Direct the BIOS to shadow to a specific memory address <br />Security - Set a password for accessing the computer <br />Power Management - Select whether to use power management, as well as set the amount of time for standby and suspend<br />Exit - Save your changes, discard your changes or restore default settings <br />Be very careful when making changes to setup. Incorrect settings may keep your computer from booting. When you are finished with your changes, you should choose "Save Changes" and exit. The BIOS will then restart your computer so that the new settings take effect. <br />The BIOS uses CMOS technology to save any changes made to the computer's settings. With this technology, a small lithium or Ni-Cad battery can supply enough power to keep the data for years. <br />In fact, some of the newer chips have a 10-year, tiny lithium battery built right into the CMOS chip!<br />
  7. 7. Updating Your BIOS<br />Occasionally, a computer will need to have its BIOS updated. This is especially true of older machines. <br />As new devices and standards arise, the BIOS needs to change in order to understand the new hardware. <br />Since the BIOS is stored in some form of ROM, changing it is a bit harder than upgrading most other types of software. To change the BIOS itself, you'll probably need a special program from the computer or BIOS manufacturer. <br />Look at the BIOS revision and date information displayed on system startup or check with your computer manufacturer to find out what type of BIOS you have. <br />Then go to the BIOS manufacturer's Web site to see if an upgrade is available. <br />Download the upgrade and the utility program needed to install it. Sometimes the utility and update are combined in a single file to download. <br />Copy the program, along with the BIOS update, onto a floppy disk. <br />Restart your computer with the floppy disk in the drive, and the program erases the old BIOS and writes the new one. <br />You can find a BIOS Wizard that will check your BIOS at BIOS Upgrades. <br />
  8. 8. POST<br />The computer POST (Power On Self Test) tests the computer, insuring that it meets the necessary system requirements and that all hardware is working properly before starting the remainder of the boot process. If the computer passes the POST the computer will have a single beep (with some computer BIOS manufacturers it may beep twice) as the computer starts and the computer will continue to start normally. However, if the computer fails the POST, the computer will either not beep at all or will generate a beep code, which tells the user the source of the problem.<br />
  9. 9. Post operations<br />Each time the computer boots up the computer must past the POST. Below is the common steps a POST performs each time your computer starts.<br /><ul><li>Test the power supply to ensure that it is turned on and that it releases its reset signal.
  10. 10. CPU must exit the reset status mode and thereafter be able to execute instructions.
  11. 11. BIOS checksum must be valid, meaning that it must be readable.
  12. 12. CMOS checksum must be valid, meaning that it must be readable.
  13. 13. CPU must be able to read all forms of memory such as the memory controller, memory bus, and memory module.
  14. 14. The first 64KB of memory must be operational and have the capability to be read and written to and from, and capable of containing the POST code.
  15. 15. I/O bus / controller must be accessible.
  16. 16. I/O bus must be able to write / read from the video subsystem and be able to read all video RAM. </li></li></ul><li>American Megatrends Inc.<br />
  17. 17. Award bios <br />
  18. 18. IBM bios<br />
  19. 19. Phoenix bios<br />
  20. 20. Beep codes to diagnose irregular post operations <br />
  21. 21. Ami bios <br />
  22. 22. Award bios<br />
  23. 23. IBM bios <br />
  24. 24. Macintosh startup tones<br />
  25. 25. PHOENIX BIOS Q3.07 OR 4.X<br />
  26. 26.
  27. 27.
  28. 28.
  29. 29. Bios password <br />
  30. 30. Bypassing bios passwords <br />Using a manufacturers backdoor password to access the BIOS<br />Use password cracking software<br />Reset the CMOS using the jumpers or solder beads.<br />Removing the CMOS battery for at least 10 minutes <br />Overloading the keyboard buffer <br />Using a professional service <br />Please remember that most BIOS passwords do not protect the hard drive, so if you need to recover the data, simply remove the hard drive and install it in an identical system, or configure it as a slave drive in an existing system. The exception to this are laptops, especially IBM Thinkpads, which silently lock the hard drive if the supervisor password is enabled. If the supervisor password is reset without resetting the and hard drive as well, you will be unable to access the data on the drive<br />
  32. 32. Award bios <br /> ALFAROMEALLyaLLyaLLYALLYaPAf_awardAWARD_SWAWARD?SWAWARD SWAWARD PWAWKWARDawkward BIOSTARCONCATCONDOCondod8ondjonetHLTJ64J256J262j332j322 KDDLkwpeterLKWPETERPINTpintSERSKY_FOXSYXZsyxzshift + syxzTTPTHAZAAADAZBAAACAZJAAADC01322222589589589721595595598598<br />
  34. 34. Phoenix BIOS <br />phoenix <br />PHOENIX<br />CMOS <br />BIOS<br />
  35. 35. COMMON PASSWORDS<br /> ALFAROMEBIOSTARbiostarbiosstarCMOScmos LKWPETERlkwpetersetupSETUPSyxzWodj<br />
  36. 36. OTHER BIOS PASSWORDS BY MANUFACTURER<br />ManufacturerPassword<br />VOBIS & IBMmerlin<br />DellDell<br />BiostarBiostar<br />CompaqCompaq<br />Enoxxo11nE<br />Epoxcentral<br />FreetechPosterie<br />IWilliwill<br />Jetwayspooml<br />Packard Bellbell9<br />QDIQDI<br />SiemensSKY_FOX<br />TMCBIGO<br />ToshibaToshiba<br />
  37. 37. TOSHIBA BIOS<br />Most Toshiba laptops and some desktop systems will bypass the BIOS password if the left shift key is held down during boot<br />IBM APTIVA BIOS<br />Press both mouse buttons repeatedly during the boot<br />
  38. 38. Password cracking software<br />The following software can be used to either crack or reset the BIOS on many chipsets. <br />If your PC is locked with a BIOS administrator password that will not allow access to the floppy drive, these utilities may not work. Also, since these utilities do not come from the manufacturer, use them cautiously and at your own risk. <br />Cmos password recovery tools 3.1<br />!BIOS<br />RemPass<br />KILLCMOS<br />
  39. 39. Using the Motherboard "Clear CMOS" Jumper or Dipswitch settings<br />Many motherboards feature a set of jumpers or dipswitches that will clear the CMOS and wipe all of the custom settings including BIOS passwords. <br />The locations of these jumpers / dipswitches will vary depending on the motherboard manufacturer and ideally you should always refer to the motherboard or computer manufacturers documentation.<br /> If the documentation is unavailable, the jumpers/dipswitches can sometimes be found along the edge of the motherboard, next to the CMOS battery, or near the processor. <br />Some manufacturers may label the jumper / dipswitch  CLEAR - CLEAR CMOS - CLR - CLRPWD - PASSWD - PASSWORD - PWD. <br />On laptop computers, the dipswitches are usually found under the keyboard or within a compartment at the bottom of the laptop.  <br />Please remember to unplug your PC and use a grounding strip before reaching into your PC and touching the motherboard. Once you locate and rest the jumper switches,  turn the computer on and check if the password has been cleared. If it has, turn the computer off and return the jumpers or dipswitches to its original position.<br />
  40. 40. Removing the CMOS Battery<br />The CMOS settings on most systems are buffered by a small battery that is attached to the motherboard. (It looks like a small watch battery).<br /> If you unplug the PC and remove the battery for 10-15 minutes, the CMOS may reset itself and the password should be blank. (Along with any other machine specific settings, so be sure you are familiar with manually reconfiguring the BIOS settings before you do this.) <br />Some manufacturers backup the power to the CMOS chipset by using a capacitor, so if your first attempt fails, leave the battery out (with the system unplugged) for at least 24 hours. <br />Some batteries are actually soldered onto the motherboard making this task more difficult. <br />Unsoldering the battery incorrectly may damage your motherboard and other components, so please don't attempt this if you are inexperienced. Another option may be to remove the CMOS chip from the motherboard for a period of time.  <br />Note: Removing the battery to reset the CMOS will not work for all PC's, and almost all of the newer laptops store their BIOS passwords in a manner which does not require continuous power, so removing the CMOS battery may not work at all.  IBM Thinkpad laptops lock the hard drive as well as the BIOS when the supervisor password is set. If you reset the BIOS password, but cannot reset the hard drive password, you may not be able to access the drive and it will remain locked, even if you place it in a new laptop. IBM Thinkpads have special jumper switches on the motherboard, and these should be used to reset the system.<br />
  41. 41. Overloading the KeyBoard Buffer<br />On some older computer systems, you can force the CMOS to enter its setup screen on boot by overloading the keyboard buffer.<br />This can be done by booting with the keyboard or mouse unattached to the systems, or on some systems by hitting the ESC key over 100 times in rapid succession.<br />
  42. 42. Jumping the Solder Beads on the CMOS<br />It is also possible to reset the CMOS by connecting or "jumping" specific solder beads on the chipset. <br />There are too many chipsets to do a breakdown of which points to jump on individual chipsets, and the location of these solder beads can vary by manufacturer, so please check your computer and motherboard documentation for details.<br />This technique is not recommended for the inexperienced and should be only be used as a "last ditch" effort.<br />
  43. 43. Using a professional service<br />If the manufacturer of the laptop or desktop PC can't or won't reset the BIOS password, you still have the option of using a professional service. Password Crackers, Inc., offers a variety of services for desktop and laptop computers for between $100 and $400. <br />For most of these services, you'll need to provide some type of legitimate proof of ownership. This may be difficult if you've acquired the computer second hand or from an online auction.<br />