• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Green and Blue Water - a model & data based analysis of water scarcity, productivity (and trade) with a focus on the CPWF basins, by Holger Hoff, Dieter Gerten and Jens Heinke
 

Green and Blue Water - a model & data based analysis of water scarcity, productivity (and trade) with a focus on the CPWF basins, by Holger Hoff, Dieter Gerten and Jens Heinke

on

  • 751 views

 

Statistics

Views

Total Views
751
Views on SlideShare
751
Embed Views
0

Actions

Likes
0
Downloads
13
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Green and Blue Water - a model & data based analysis of water scarcity, productivity (and trade) with a focus on the CPWF basins, by Holger Hoff, Dieter Gerten and Jens Heinke Green and Blue Water - a model & data based analysis of water scarcity, productivity (and trade) with a focus on the CPWF basins, by Holger Hoff, Dieter Gerten and Jens Heinke Presentation Transcript

    • Green and Blue Water a model & data based analysis ofwater scarcity, productivity (and trade) with a focus on the CPWF basins Holger Hoff1,2, Dieter Gerten1 , Jens Heinke1 1:Potsdam Institute for Climate Impact Research2: Stockholm Environment Institute & Resilience Centre
    • The LPJmL eco-hydrological & crop model biophysical processes at plant level CO2 Temperature Precipitation Radiation e.g. crop Interception production, Photosynthesisbiofuels, carbon  Transpiration sequestration Carbon / Water Balance Water resources Crop yields Evaporation Surface flow Subsurface flow consistent simulation of water resources, plant water use and productivity .
    • The LPJmL eco-hydrological & crop model landscape level livestock household precipitation partitioning into green & blue industry conveyance losses withdrawals evaporationinterception lakes irrigation reservoirs transpiration Irrigation….. figure demand von Stefanie return flows evaporation surface runoff plant water supply subsurface runoff consistent calculation of green & blue virtual water contents (crops and other ecosystem services) AND water availability
    • The LPJmL eco-hydrological & crop model reservoirs Biemans et al 2011
    • current blue water availability per capitam3 cap-1 yr-1 adding green water (evapotranspiration from cropland)
    • current green & blue water availability per capitam3 cap-1 yr-1 discussion: country-wise aggregation of water for food potential for expanding cropland ?
    • current crop water productivity (kcal m-3)kcal m-3 Sri Lanka 2129 kcal m-3 India 1648 Bangladesh 2697 Pakistan 1218 water productivity -> weighted water availability
    • maximum calorie production (kcal cap-1) agricultural water productivity for current water availability & productivitykcal cap-1 day-1
    • CPWF basins current green & blue water availability per capita 6000 5000 4000 3000m3 cap-1 year-1 blue water green wate 2000 1000 0 Ganges Indus Limpopo Mekong Niger Nile Sao Francisco Volta Ganges Indus Limpopo Mekong Niger Nile Sao Yellow Volta Yellow Francisco .
    • CPWF basins current crop water productivity (kcal m-3) 2500 2000 1500 factor 4kcal m-3 1000 500 0 Ganges Indus Limpopo Mekong Niger Nile Sao Volta Yellow Francisco discussion: potential for closing the yield gap ? . .
    • CPWF basins maximum crop production (kcal cap-1) for current water availability & productivity 12000 10000 8000kcal cap-1 day-1 6000 4000 3000 2000 0 po o lta w s g s er ile sc du ge on l lo ig po Vo N ci an In ek Ye N m an G M Li Fr o 3000 a tipping point? Sa 30 year averages .
    • CPWF basins inter-annual variability of green & blue water availability LPJmL vs CPWF data (1951-2000) 0.5 0.45 0.4 0.35 0.3 CP blueCoV 0.25 LPJ blue 0.2 CP green 0.15 LPJ green 0.1 0.05 0 Ganges Indus Limpopo Mekong Niger Nile Sao Volta Yellow Francisco 3000 a tipping point? .
    • CPWF basins factoring in variability 14000 12000 10000kcal cap-1 day-1 8000 6000 4000 3000 2000 0 po o lta w s g s er ile sc du ge on l lo ig po Vo N ci an In ek Ye N m an G M Li Fr o 3000 a tipping point? Sa using 10th percentile instead of mean green & blue water availability . .
    • CPWF basins the future (2050) 14000 12000 10000 8000kcal cap-1 day-1 6000 4000 3000 2000 0 po o lta w s g s er ile sc du ge on l lo ig po Vo N ci an In ek Ye N m an G M Li Fr o Sa discussion: 1) future crop water productivity (incl. CO2 effect)? 2) how much of the additional pressure is due to climate change? . .
    • future water demand3,5 population change only 3 – relative to year 2000 Ganges2,5 Indus Limpopo 2 Mekong Niger1,5 Nile Sao Francisco 1 Volta Yellow0,5 0 1990 2000 2010 2020 2030 2040 2050 2060 discussion: future populations and diets ? .
    • future (blue) water availability1,2 1 Ganges Indus0,8 Limpopo Mekong0,6 Niger Nile0,4 Sao Francisco climate change only Volta0,2 – relative to year 2000 Yellow 0 1990 2000 2010 2020 2030 2040 2050 2060 . – 30 year averages, not accounting for changing variability, monsoon etc .
    • next steps: simulating impacts of variability, e.g. monsoon changes .Bondeau pers comm
    • next steps: simulating land use change effects via “moisture recycling” Nikoli et al . Indus „precipitationshed“ .
    • next steps: simulating land use change effects via “moisture recycling” (external driver) Nikoli et al 80 70 60 50% internally generated 40 precipitation 30 20 internal 10 terrestrial 0 ao Francisco Niger Volta Nile Limpopo internalprecipitation Indus basin Yellow Mekong Ganges originating from terrestrial ET LPJmL simulations of ET changes with land use change
    • next steps: (“real”) water footprints of food production (and trade) plus other ecosystem services e.g. carbon sequestration%
    • LPJ-based crop virtual water contents plus ComTrade data -> virtual water im- / exports consistent with water availability (“footprints”) Sri Lanka 100m3 cap-1 net import Cyprus India 5m3 cap-1 net export Bangladesh 30 m3 cap-1 net import Pakistan 2 m3 cap-1 net exportdiscussion: what happens under increasing future water scarcity?see MENA example .
    • LPJ-based crop virtual water contents plus ComTrade data -> virtual water im- / exports consistent with water availability (“footprints”) 1200 correlations of per capita net VW imports andVW imports (m**3) per capita & 1000 - blue water availability: Cyprus - 0.51 - blue plus green water avail: - 0.64 800 - water-limited potential kcal production: - 0.79 600 year 400 200 0 0 500 1000 1500 2000 2500 3000 3500 water-limited potential kcal production per capita & day .
    • 1) Effects of international trade on local water resources a) in water scarce (MENA) countriesm3 cap-1 yr-1 .