Your SlideShare is downloading. ×
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wheeler

722

Published on

A presentation from the 2013 CCS Costs Workshop.

A presentation from the 2013 CCS Costs Workshop.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
722
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CO2 Capture within Refining: Case Studies 3rd CCS Cost Workshop Paris, 6-7 November 2013 Rosa Maria Domenichini Director, Power Division Foster Wheeler © Foster Wheeler 2013. All rights reserved
  • 2. CO2 capture within refining processes Agenda •  Contribution of refining to world CO2 emissions •  Refining processes •  Major refinery CO2 emission sources •  Applying carbon capture to the refinery: case studies •  Conclusions © Foster Wheeler 2013. All rights reserved 1
  • 3. Introduction Contribution of refining to CO2 emissions Source: NETL DOE website (2013) http://netldev.netl.doe.gov/research/coal/carbon-storage/ carbon-storage-natcarb/co2-stationary-sources Source: concawe report 07/11 https://www.concawe.eu/DocShareNoFrame/docs/4/ AKPHIDGDCMEBKOOKOOLLCGBDVEVCWY939YBYW3B6AY W3/CEnet/docs/DLS/Rpt_11-7-2011-03321-01-E.pdf Ø  Refining contribution: 6% Ø  Annual CO2 emissions up to 4-5 million tons/year for the largest refineries (400,000 BPSD equivalent to approx 20,000,000 tons/year of crude oil) © Foster Wheeler 2013. All rights reserved 2
  • 4. CO2 capture within refining processes Contribution of refining to CO2 emissions Ø  Most carbon entering the refinery leaves again with the hydrocarbon products; CO2 emissions related to the chemistry and mostly to the energy demand of the refinery processes Ø  Typically 5-10% of thermal power entering is lost, increasing trend due to more stringent product specs, heavier crude oils, need to reduce/eliminate heavy products Ø  Multiple dispersed sources over large areas Reduction of refining carbon footprint Ø  Ø  Ø  Ø  Efficiency improvements/flaring reduction Feedstocks/fuels substitution Modifications to refinery configuration Carbon capture and storage © Foster Wheeler 2013. All rights reserved 3
  • 5. Modern refinery simplified scheme GPL   HDT   (naphtha)   H2   CCR   HDS   (Kerosene)   H2   HDS   (Gasoil)   gasoline   H2   kerosene   gasoil   Topping   FCC   HDCK   Vacuum   H2   H2   Delayed   Coker   GasificaBon   products   © Foster Wheeler 2013. All rights reserved 4
  • 6. CO2 capture within refining processes CO2 sources Refinery   Process  heaters  &  al   Topping/Vacuum,  CCR,   HDS,  HCK,  TGT  incinerator,     FCC  regenerator,  etc)   Hydrogen  via   steam  reformer   Power  plant   Refining   Flare  (no  capture)   Hydrogen   Chemicals  producBon   via  boGom  of  the  barrel   gasificaBon   •   heavy  liquid  residue   •   petcoke   Methanol   SNG   Others     (GTL,  ferLlizers…)   © Foster Wheeler 2013. All rights reserved 5
  • 7. CO2 capture within refining processes Example of rough split of major CO2 emitters Power/steam generation 20% H2 production 25% Process heaters / FCC regenerator 55% © Foster Wheeler 2013. All rights reserved 6
  • 8. CO2 capture from process heaters flue gas More emitters, same area/different sizes, to the same stack Compressed   CO2   Heat   recovery   Flue  gas   to  atm   CO2  capture   plant   NEW  UNIT   Fuel  oil   Fuel  gas   NG   H2S  to  SRU   Fuel  gas   absorber   Process  unit   Main  process  heaters   joint:   crude  disBllaBon  unit,   catalyBc  reforming,     HDS   © Foster Wheeler 2013. All rights reserved 7
  • 9. CO2 capture from process heaters flue gas CCU utility requirements: two scenarios… Utilities available from refinery Compressed  CO2   Utilities NOT available from refinery Power  to  CO2   compressor   (fit for purpose) CO2  compression   Power  to  AGR   Flue  gas   Boiler   CO2  capture  plant   Deaerator   Condensate   LP  steam   EE   Make-­‐up   © Foster Wheeler 2013. All rights reserved 8
  • 10. CO2 capture from process heaters flue gas Bases  for  the  analysis   LocaLon   -­‐   Central  Europe   Total  capital  requirement   -­‐   TIC  +  20%   IRR   %   10   years   25   %  debt     100   %   No  inflacLon   €/MWh   70   €/t   Equivalent  to  loss  of   power  producLon   $/MMBtu   12   -­‐   110  bar,  liquefied   €/t   10   Plant  life     Financial  leverage     InflaLon  rate     Electricity  price   Steam  price   NG  cost   CO2  condiLons  @  BL   CO2  transport  and  storage  cost   © Foster Wheeler 2013. All rights reserved 9
  • 11. CO2 capture from process heaters flue gas Case study: refinery heaters Case       UBliBes  from  refinery   Dedicated  power  plant   Refinery  size     300,000  bpd   Origin  of  emission     Common  stack  on  furnaces  in  crude  disLllaLon  unit,  catalyLc   reforming,  HDS   CO2  balance               CO2  produced  (process)   t/h   100   100   CO2  captured  (process)   t/h   91   91   CO2  emiced  (uLlity  plant)   t/h   -­‐   19   t/h   (ktpa)   91   (700)   72   (555)   CO2  abated  (total)   UBlity  requirement               Natural  gas   MWth   -­‐   98   Electrical  consumpLons   MWe   12.1   (1) t/h   120   (1) LP  Steam  consumpLon  (4  barg,  sat)   Economic  data       Total  capital  requirement   (1)    Generated  internally       M€               153       181       © Foster Wheeler 2013. All rights reserved 10
  • 12. CO2 capture from process heaters flue gas Case study: refinery heaters Case       Refinery  size   CO2  avoidance  cost   Central  Europe   (NG  cost:  12  $/MMBtu   EE  cost:  70  €/MWh)   USA   (NG  cost:  4  $/MMBtu    EE  cost:  50  $/MWh)   Dedicated  power   plant   UBliBes  from  refinery         300,000  bpd           €/t   72   103   €/t   60   80   © Foster Wheeler 2013. All rights reserved 11
  • 13. CO2 capture within H2 production process Different alternatives available Flue  gas   Achievable  CO2  capture   90%     CO2  capture   OpLon  #3   Achievable  CO2  capture   60%     Feed   Steam   reforming   CO2  capture   OpLon  #1   ShiX   PSA   H2   Fuel   Achievable  CO2  capture   55%     CO2  capture   OpLon  #2   PSA  tail  gas   © Foster Wheeler 2013. All rights reserved 12
  • 14. CO2 capture within H2 production process Case study: option 1 Flue  gas   Feed   Fuel   Steam   reforming   ShiX   CO2  capture   OpLon  #1   H2   PSA   PSA  tail  gas   MDEA   absorber   CO2   stripper   CO2  capture   99.5%   CO2  drying/   compression   © Foster Wheeler 2013. All rights reserved 13
  • 15. CO2 capture within H2 production process Case study: option 1 Hydrogen  from  steam  reformer       Nm3/h   Hydrogen  producLon   AGR  CO2  balance       150,000       kmol/h   (ktpa)   CO2  capture  rate   1,702   (623)   %   CO2  captured   AGR  +  compression  unit  consumpBon       99.5           Electrical  consumpLons   MWe   10.1   LP  Steam  consumpLon   t/h   20.2   Nm3/h   175   Hydrogen  losses   Economic  data           Total  capital  requirement   M€   92   CO2  capture  cost  (OpLon  #1)   €/t   47   CO2  capture  cost  (OpLon  #3)   © Foster Wheeler 2013. All rights reserved €/t   65   14
  • 16. Joint CO2 capture from different refinery processes CO2 capture from process heaters flue gas and within H2 production process Compressed  CO2   Power  to  CO2   compressor   CO2  compression   Reformed   gas   CO2  capture   plant   Power  to  AGRUs   To  PSA   Boiler   Flue  gas   CO2  capture   plant   Deaerator   Make-­‐up   © Foster Wheeler 2013. All rights reserved 15
  • 17. Joint CO2 capture from different processes CO2 capture from process heaters flue gas and within H2 production process Refinery  size     Nm3/h   Hydrogen  from  steam  reformer   Origin  of  emission   CO2  balance   300,000  bpd   150,000   Common  stack  on  furnaces  in  CDU,  reforming,  HDS,   steam  reformer             CO2  produced   t/h   224.8   CO2  captured   t/h   165.9   CO2  emiced   t/h   t/h   (ktpa)   24.1   141.8   (1093)   CO2  abated   UBlity  requirement           Natural  gas   MWth   122   Electrical  consumpLons   MWe   22.2   LP  steam  consumpLon   t/h   140   Economic  data           Investment  cost   M€   284   CO2  avoidance  cost   €/t   78   © Foster Wheeler 2013. All rights reserved 16
  • 18. CO2 capture within an XTP plant Hydrogen case CAPTURE  RATE  87%   CO2   compression   ASU   CO2  TO   STORAGE   NEW  UNIT   Heavy  residue   70  t/h   Oxygen   GasificaLon   CO2  to  atm   2   Raw   Syngas   CO  Shil   ShiXed   syngas   AGR   Sour  gas   ULliLes  and   Offsites   Clean   syngas   PSA   Hydrogen   150,000  Nm3/h   SRU  &  TGT   © Foster Wheeler 2013. All rights reserved 17
  • 19. CO2 capture within an XTP plant Hydrogen case Hydrogen  from  asphalt   Liquid  heavy  residue  flowrate   t/h   70   Raw  syngas  flowrate   kmol/h   22,000   Hydrogen  producLon   Nm3/h   150,000   kmol/h   (ktpa)   4,370   (1,430)   %   87.3   MWe   13.3   Total  capital  requirement   M€   35   CO2  capture  cost   €/t   19   CO2  balance   CO2  captured   CO2  capture  rate   Compression  unit   Compression  consumpLons  (up  to  110  bar)   © Foster Wheeler 2013. All rights reserved 18
  • 20. CO2 capture within an XTP plant Methanol case CAPTURE  RATE  43%   CO2   compression   ASU   Heavy  residue   148  t/h   Oxygen   GasificaLon   NEW  UNIT   CO2  to  atm   Raw   Syngas   CO  Shil   ShiXed   syngas   Clean   syngas   AGR   Sour  gas   ULliLes  and   Offsites   CO2  TO   STORAGE   Methanol   plant   MeOH   4000  TPD   SRU  &  TGT   © Foster Wheeler 2013. All rights reserved 19
  • 21. CO2 capture within an XTP plant Methanol case (*) Methanol  from  asphalt   Liquid  heavy  residue  flowrate   t/h   148   Raw  syngas  flowrate   kmol/h   46,000   MeOH  producLon  (*)   tpd   4,000   kmol/h   (ktpa)   %   4,490   (1,470)   42.8   MWe   13.6   Total  capital  requirement   M€   36   CO2  capture  cost   €/t   19   CO2  balance   Captured  CO2   CO2  capture  rate   Compression  unit   Compression  consumpLons  (up  to  110  bar)   (*) or GTL process (LPG production 745 bpd, naphtha production 3,300 bpd, Diesel production 6,600 bpd) © Foster Wheeler 2013. All rights reserved 20
  • 22. CO2 capture within refining processes Summary findings •  Refineries are not larger CO2 emitters, but CO2 capture needs to be considered •  Number of options available for applying carbon capture to most of the CO2 sources in a refinery •  Post combustion CO2 capture in refining process still expensive •  Both pre and post combustion CO2 capture applicable to Hydrogen process; pre-combustion capture fostered by the process itself (limiting capture rate) •  CO2 capture in chemical production strongly convenient CO2 being already available at plant BL (limiting capture rate): only compression needed •  Transportation economically attractive requires scale economy •  Application of oxy-combustion to refining processes under R&D (FCC regenerator) © Foster Wheeler 2013. All rights reserved 21
  • 23. CO2 capture within refining processes Summary findings •  The most suitable options for each source to be determined by site-specific study (set the target, perform C balance, select optimal technologies, develop reliable site-specific cost estimate) •  Impacts on an existing refinery: Ø  Ø  Increased consumption of fuel gas/ reduced CO2 abatement Ø  Increase in service and cooling water withdrawal Ø  •  Incremental steam generation / power consumption of CO2 capture may require a dedicated boiler Impact on plot plan (ducting, CO2 capture and compression units) To make carbon capture economically attractive, the CO2 needs to have a value significantly higher than actual EU ETS, unless EOR is applicable. © Foster Wheeler 2013. All rights reserved 22
  • 24. www.fwc.com rosa_domenichini@fwceu.com noemi_ferrari@fwceu.com paolo_cotone@fwceu.com © Foster Wheeler 2013. All rights reserved

×