Your SlideShare is downloading. ×

AlChE-Global-CCS_Institute-Presentation-101813

752

Published on

The Global CCS Institute presented a workshop at the American Institute of Chemical Engineers (AIChE) ‘Carbon Management Technology Conference’ in Alexandria, Virginia on 20 October 2013.

The Global CCS Institute presented a workshop at the American Institute of Chemical Engineers (AIChE) ‘Carbon Management Technology Conference’ in Alexandria, Virginia on 20 October 2013.

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
752
On Slideshare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
23
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CCS/CCUS Overview: What It Is and What Are Its Implications? AIChE Carbon Management Conference, Alexandria, VA 20 October 2013
  • 2. Agenda 1:00 Welcome and Introductions 1:15 The Role of CCS/CCUS 1:45 Capturing CO2 From Power Generation and Industrial Processes 2:15 Transport/Storage/Utilization of CO2 3:00 Legal/Regulatory Framework 3:30 Panel Discussion: Proactively Addressing the Management of CO2 4:00 Summary and Wrap-up 4:30 Networking Reception
  • 3. Introducing the Global CCS Institute The Global CCS Institute accelerates carbon capture and storage, a vital technology to tackle climate change and provide energy security. We advocate for CCS as a crucial component in a portfolio of technologies required to reduce greenhouse gas emissions.   We drive the adoption of CCS as quickly and cost effectively as possible by sharing expertise, building capacity and providing advice and support to overcome challenges.   Our diverse international Membership comprises governments, global corporations, small companies, research bodies and non-government organisations committed to CCS as an integral part of a low–carbon future.   3  
  • 4. Globally  connected  membership   INSTITUTE MEMBERSHIP NUMBERS AND LOCATIONS   TOTAL 378 80   136   82   3   5   74  
  • 5. The Global CCS Institute – what we do Expert  support  to  Members  /  Projects   Comprehensive  resources       Networking  capability       Best  pracHce  guidelines  and  toolkits  
  • 6. The Global Status of CCS: 2013 Key Institute publication   2013 edition: released 10 October   Comprehensive coverage on the state of CCS projects and technologies   Project progress outlined since 2010   Includes recommendations for moving forward 6  
  • 7. CCS/CCUS  Overview:    What  Is  It  &  What     Are  Its  ImplicaHons?   CCS/CCUS  OVERVIEW:       The  Role  of  CCS/CCUS   Prepared By: Steven M. Carpenter, Vice, President ADVANCED RESOURCES INTERNATIONAL, INC. Arlington, VA 20 October 2013 7
  • 8. Presentation Topics 30,000 ft view – why are we here? CCS vs. CCUS Major Project portfolio Standardization is key 8
  • 9. Background  –  Why  are  we  here?   9
  • 10. Energy is Good: 25/90% Population NORTH KOREA •  20% access to electricity •  Population is 3” shorter & 7 lbs. lighter •  Infant Mortality Rate in 12 x higher •  156th in GDP/Capita SOUTH KOREA •  90% access to electricity •  Population is 3” taller & 7 lbs. heavier •  Infant Mortality Rate 12 x lower •  32nd in GDP/capita 10
  • 11. What is CCS? 11
  • 12. What is CCS? 12
  • 13. What is CCS? 13
  • 14. What is CCS? 14
  • 15. Setting the expectations… •  •  •  •  15 December  17,  1903   20  feet  in  alFtude   120  feet  in  distance   12  seconds  in  duraFon  
  • 16. David Black’s Flyover 16
  • 17. In just 17 short years… •  2003:    DOE  Carbon  SequestraFon  Partnerships     •  2010:    White  House  Interagency  JTF  on  CCS   •  2016:    5-­‐10  full  scale  demonstraFons   •  2020:    Widespread  commercial  deployment   17
  • 18. In 17 years we go from… 18
  • 19. …to this… 19
  • 20. CCS  vs.  CCUS  –  What  is  CO2-­‐EOR  &   why  is  it  important?   20
  • 21. What is CCS? 21
  • 22. What is CCS? 22
  • 23. Integrating CO2-EOR and CO2 Storage Could Increase Storage Potential CO2 Source Oil to Market Production Well CO2 Injection CO2 Recycled Swept Area Current Water Oil Contact Original Water Oil Contact Oil Bank Unswept Area TZ/ROZ Saline Reservoir Stage #1 Stage #2 Stage #3
  • 24. U.S.  CO2-­‐EOR  AcFvity  –  Oil  Fields  &  CO2  Sources   120   Dakota  Coal   GasificaFon   Plant   Natural  CO2  Source   Industrial  CO2  Source   Antrim  Gas   Plant   1   LaBarge   Gas  Plant   6   Encore  Pipeline   2   McElmo  Dome   Sheep  Mountain   Bravo  Dome   1   Enid  FerFlizer  Plant   3   5   2   Jackson   Dome   17   Denbury/Green  Pipeline   Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources. 24 ExisHng  CO2  Pipeline   CO2  Pipeline  Under   Development     120 CO2-EOR projects provide 352,000 bbl/day 13   Lost  Cabin  Gas  Plant   70   Val  Verde   Gas  Plants   Number  of  CO2-­‐EOR   Projects     New CO2 pipelines are expanding CO2-EOR to new oil fields and basins.   320 mile Green Pipeline   226 mile Encore Pipeline
  • 25. Significant Volumes of CO2 Are Already Being Injected for EOR in the U.S. Location of EOR / Storage CO2 Source Type and Location CO2 Supply (MMcfd) Geologic Anthropogenic 1,600 190 - 300 930 - Texas, New Mexico, Oklahoma, Utah Geologic (Colorado, New Mexico) Gas Processing, Fertilizer Plant (Texas) Colorado, Wyoming Gas Processing (Wyoming) Mississippi Geologic (Mississippi) Michigan Gas Processing (Michigan) - 10 Oklahoma Fertilizer Plant (Oklahoma) - 35 Saskatchewan Coal Gasification (North Dakota) - 150 2,530 685 49 13 TOTAL (MMcfd) TOTAL (MMt per year) * Source: Advanced Resources International, 2012 **MMcfd of CO2 can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 * 103 (Mcf per metric ton) 25
  • 26. Oil  Recovery  &  CO2  Storage  From     "Next  GeneraFon"  CO2-­‐EOR  Technology*     Oil Recovery*** (Billion Barrels) Reservoir Setting CO2 Demand/Storage*** (Billion Metric Tons) Technical Economic** Technical Economic** L-48 Onshore 104 60 32 17 L-48 Offshore/Alaska 15 7 6 3 Near-Miscible CO2-EOR 1 * 1 * ROZ (below fields)**** 16 13 7 5 Sub-Total 136 80 46 25 Additional From ROZ “Fairways” 40 20 16 8 *The values for economically recoverable oil and economic CO2 demand (storage) represent an update to the numbers in the NETL/ARI report “Improving Domestic Energy Security and Lowering CO2 Emissions with “Next Generation” CO2-Enhanced Oil Recovery (CO2-EOR) (June 1, 2011). **At $85 per barrel oil price and $40 per metric ton CO2 market price with ROR of 20% (before tax). ***Includes 2.6 billion barrels already being produced or being developed with miscible CO2-EOR and 2,300 million metric tons of CO2 from natural sources and gas processing plants. **** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary. 26 26
  • 27. Number of 1 GW Size Coal-Fired Power Plants* Demand  for  CO2:    Number  of  1  GW  Size  Coal-­‐Fired   Power  Plants   Technical Demand/ Storage Capacity 300   Total CO2 Anthropogenic CO2 Economic Demand/ Storage Capacity** Total CO2 Anthropogenic CO2 Technical L-48 Onshore 133   121   100   0   90 31 14 Near-Miscible CO2EOR 200   170 L-48 Offshore/Alaska 228   Economic* 5 1 ROZ** 34 28 Sub-Total 240   *Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operations per 1 GW of generating capacity. **At an oil price of $85/B, a CO2 market price of $40/mt and a 20% ROR, before. Source: Advanced Resources Int’l (2011). 27 Reservoir Setting Number of 1GW Size Coal-Fired Power Plants*** 240 133 Additional From ROZ “Fairways” 86 43 *At $85 per barrel oil price and $40 per metric ton CO2 market price with ROR of 20% (before tax). ** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary. ***Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operation per 1 GW of generating capacity; the U.S. currently has approximately 309 GW of coal-fired power plant capacity.
  • 28. Linking  CO2  Supplies  with  CO2-­‐EOR  Demand   0   The  primary  EOR  markets  for   excess  CO2  supplies  from  the  Ohio   Valley,  South  AtlanFc  and  Mid-­‐ ConFnent  is  East/West  Texas  and   Oklahoma.   0.2   0.6   2.0   6.3   3.7   4.2   3.7   0.3   0.2   8 Bcfd 7.4   0.2   Captured CO2 Supplies and CO2 Demand Region New England Middle Atlantic South Atlantic East North Central West North Central East South Central West South Central Mountain Pacific Total ROZ "Fairways" Captured CO2 Supplies* (BMt) CO2 Excess CO2 Demand Supply (BMt) (BMt) 0.2 2.3 7.4 4.2 6.3 3.6 4.3 3.7 0.3 0.2 0.2 0.6 2.0 0.2 14.2 3.7 4.2 32.2 25.3 20.8 * Capture from 200 GW of coal-fired power plants, 90% capture rate. 28 3.6   Net CO2 Demand (BMt) 8.0   14.2   -­‐   0.2 2.1 7.2 3.6 4.3 3.3 8.0 0.2   2.3   4.2   4.3   cfd 19 B cfd 13 B Jackson Dome 9.9 Pacific   3.8 0.3   13.7 8.0 JAF2012_035.XLS 4.2   CO2 Demand by EOR (Bmt) Captured CO2 Emissions (Bmt) Sources: EIA Annual Energy Outlook 2011 for CO2 emissions; NETL/Advanced Resources Int’l (2011) CO2 demand.
  • 29. CO2-EOR Global Potential Region Name Asia Pacific Central and South America Europe Former Soviet Union Middle East and North Africa North America/Other North America/United States South Asia S. Africa/Antarctica Total 29 Basin Count 8 7 2 6 11 3 14 1 2 54 EIA  assessment  of  54  large  world  oil  basins  for  CO2-­‐ based  Enhanced  Oil  Recovery   •  High  level,  1st  order  assessment  of  CO2-­‐EOR  and   associated  storage  potenFal,  using  U.S.   experience  as  analog.   •  Tested  basin-­‐level  esFmates  with  detailed   modeling  of  47  large  oil  fields  in  6  basins.  
  • 30. CO2-EOR Global Potential 30
  • 31. CCUS Dependency & Challenges •  Growth  in  producFon  from  CO2-­‐EOR  is  limited  by  the   availability  of  reliable,  affordable  CO2.   •  If  increased  volumes  of  CO2  do  not  result  from  CCUS,  then   these    benefits  from  CO2-­‐EOR  will  not  be  realized.   •  Therefore,  not  only  does  CCUS  need  CO2-­‐EOR  to  ensure   viability  of  CCUS,  but  CO2-­‐EOR  needs  CCUS  to  ensure  adequate   CO2  to  facilitate  CO2-­‐EOR  growth.   •  This  will  become  even  more  apparent  as  potenFal  even  more   new  targets  for  CO2-­‐EOR  become  recognized  &  internaFonal   desire  for  CO2-­‐EOR  grows.   31
  • 32. Major  CCS  Project  Poriolio   32
  • 33. Major CCS Demonstration Projects CCPI   FutureGen 2.0   Large-­‐scale  TesHng  of  Oxy-­‐CombusHon     DOE  Share:  Plant  -­‐    $1.04B     SALINE  –  1M  TPY  2017  start   ICCS  Area  1       FutureGen  2.0   Archer Daniels Midland CO2  Capture  from  Ethanol  Plant   DOE  Share:    $141M     SALINE  –  ~0.9M  TPY  2014  start   Summit TX Clean Energy   Commercial  Demo  of  Advanced   IGCC  w/  Full  Carbon  Capture   DOE  Share:  $450M   EOR  –  ~2.2  TPY  2017  start   Southern Company   Kemper County IGCC Project Novel  Transport  Gasifier     w/Carbon  Capture   DOE  Share:    $270M     EOR  –  ~3.0  M  TPY  2014  start   HECA   Commercial  Demo  of  Advanced   IGCC  w/  Full  Carbon  Capture   DOE  Share:    $408M     EOR  –    ~2.6M  TPY  2019  start   NRG W.A. Parish Generating Station Post  CombusHon  CO2  Capture   DOE  Share:  $167M     EOR  –    ~1.4M  TPY  2016  start   33 Air Products and Chemicals, Inc. CO2  Capture  from  Steam  Methane  Reformers   DOE  Share:    $284M     EOR  –    ~0.93M  TPY  2012  start   Leucadia Energy CO2  Capture  from  Methanol  Plant   DOE  Share:    $261M     EOR  –  ~4.5  M  TPY  2017  start  
  • 34. RCSP Phase III: Development Projects Core  Sampling  Taken   Seismic  Survey     5   Completed   InjecFon  Started   June  2013   InjecFon  began   Nov  2011   1   4   InjecFon  started   in  depleted  reef     February  2013   3   Partnership Geologic Province Target Injection Volume (tonnes) 1   Big Sky Nugget Sandstone 1,000,000 2   MGSC 3   2    9   MRCSP 8   6   InjecFon  Started  April   2009   InjecFon  Ongoing   2013  InjecFon  Scheduled     Large-­‐volume  tests     Four  Partnerships  currently  injec9ng  CO2       Remaining  injec9ons  scheduled  2013-­‐2015   7   InjecFon  began   August  2012   4   5   PCOR 6   SECARB InjecFon  Scheduled  2013-­‐2015   7     8   SWP 9   WESTCARB 34 Illinois BasinMt. Simon Sandstone Michigan BasinNiagaran Reef Powder River BasinBell Creek Field Horn River BasinCarbonates Gulf Coast – Cranfield Field- Tuscaloosa Formation Gulf Coast – Paluxy Formation Regional CCUS Opportunity 1,000,000 1,000,000 1,500,000 2,000,000 3,400,000 250,000     1,000,000 Regional Characterization
  • 35. Global Portfolio 35
  • 36. Global Portfolio - LSIP GCCSI identified 65 Large Scale Integrated Projects 3 new LSIPs in Brazil, China, and Saudi Arabia 13 LSIPs removed/cancelled since 2012 4 LSIPs have commenced operation since 2012, for a total of 12 LSI-CCS projects in operation Reduction in # LSIPs reduces CO2 captured/stored from 148 million tonnes per annum (Mtpa) to 122 36
  • 37. Importance of CCUS (CO2-EOR) SecFon  7.2:     CO2–EOR  DOMINATES  GEOLOGIC  STORAGE   “It  is  es9mated  that  during  the  past  40  years  nearly  1  Gt  of   CO2  has  been  injected  into  geological  reservoirs  as  part  of   CO2–EOR  ac9vi9es.”   •  Accounts for 78% of DOE Demonstration Projects (7 of 9) •  Accounts for 52% of LSIPs at various stages of the asset life cycle (34 of 65)     37 63% of operating phase projects (5 of 8) 75% of execution phase projects (3 of 4) Projects underway or planned in North America, South America, Europe, Asia, and Australia
  • 38. StandardizaFon   38
  • 39. EPA’s Regulatory “Train Wreck” Source:  Edison  Electric  InsFtute;  Dick  Winschel,  CONSOL  Energy   39
  • 40. CCS Regulatory “Train Wreck” 40
  • 41. TC-265 Working Groups TC-­‐265   Twined   Secretariat   Capture   41 Transport   Storage   QuanFficaFon  &   VerificaFon   Crossculng   CO2-­‐EOR  
  • 42. Thank you Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420 Fax: (703) 528-0439 Houston, TX 11931 Wickchester Ln., Suite 200 Houston, TX 77043 Phone: (281) 558-9200 Fax: (281) 558-9202 Knoxville, TN 603 W. Main Street, Suite 906 Knoxville, TN 37902 Phone: (865) 541-4690 Fax: (865) 541-4688 Cincinnati, OH 1282 Secretariat Court Batavia, OH 45103 Phone: (513) 460-0360 Email: scarpenter@adv-res.com http://adv-res.com/ 42
  • 43. Capturing CO2 From Power Generation and Industrial Processes Kevin C O’Brien, PhD Principal Manager Carbon Capture – the Americas
  • 44. Defining Carbon Capture The Cost Driving Step in CCS / CCUS
  • 45. Post Combustion Capture Challenges   Most technologies need significant scaling to be relevant to power generation   Loss of power around 30%           Needs cleaning of flue gases (SOx and NOx) Integration may reduce flexibility of power plant Increase in water around 35% Significant space requirements could be a challenge at well established sites Amine emissions
  • 46. Pre-Combustion Capture Challenges:   Energy penalty still significant at around 20%   Commercial scale hydrogen turbine still to be demonstrated   Additional purification may be required in the event of venting   Gasification plants are unfamiliar to the power sector
  • 47. Oxy-Combustion (Oxyfuel) Challenges:   Requires an integrated plant   Development will require a whole of plant approach   Air separation unit requires around 25% of electricity produced   Start up using air may require additional gas treating equipment   Increased water consumption
  • 48. Large Scale Capture LSIP = Large Scale Integrated Project 800,000 tpa for coal-based power gen 400,000 tpa for emission-intensive industrial facilities (including natural gas-based power generation)
  • 49. Large scale integrated CCS projects (LSIPs)
  • 50. Wide variety of capture options being planned Projects by capture type and industry Power generation Industrial applications 0 5 10 Number of projects Pre-combustion (gasification) Post-combustion Industrial separation 15 20 25 30 35 40 45 Pre-combustion (natural gas processing) Oxy-fuel combustion Various/Not decided
  • 51. Significant amounts of CO2 are already being captured and stored CO2 captured by industry and project development stage Power generation Natural gas processing Other industries 0 10 Mass of CO2 (Mtpa) Identify Evaluate 20 Define 30 Execute 40 Operate 50 60
  • 52. Regional variations exist in preferred capture technology Projects by location and capture type United States Europe China Canada Australia Middle East Other Asia South America Africa 0 5 10 15 20 Number of projects Pre-combustion (gasification) Pre-combustion (natural gas processing) Post-combustion Oxy-fuel combustion Industrial separation Various/Not decided 25
  • 53. Challenges for large-scale carbon capture •  Demonstrating capture at larger scale in more industries •  Reducing costs, including through the development of new technologies •  More effective knowledge sharing •  Integration of capture into large-scale power and industrial applications •  Flexible operation of power stations with CCS
  • 54. Capture R&D Provides Promise of Driving Down Capture Costs
  • 55. Solvent Based Process •  Absorption based process •  Dissolve CO2 into solvent, i.e. aqueous amine •  Solvent regeneration by heating
  • 56. Sorbent Based Process •  Physi or Chemi sorption based process •  Packed or Fluidized Beds •  Lower pressure or increase temperature to regenerate
  • 57. Membrane Based Process •  Typically thin dense layer on porous substrate •  Permeation of CO2 through dense layer due to solution / diffusion through membrane •  N2 and other components rejected (retentate) and emitted up the stack
  • 58. Relative Maturity of Capture Technologies DOE/NETL’s  Exis-ng  Plants  R&D  Program  –Carbon  Dioxide,  Water,  &   Mercury,  June  2010  
  • 59. Final observations •  Carbon capture is an established commercial process in natural gas and chemical production. •  Carbon capture is being demonstrated in power generation. •  Primary challenges for capture are related to process economics – parasitic power and capital costs •  There are many options for capture approaches and processes – there is no “holy grail” •  Continued R&D in capture is vital to reduce overall costs of CCS / CCUS
  • 60. Southeast Regional Carbon Sequestration Partnership CCS/CCUS Demonstration Projects Presented to: The Global CCS Institute’s CCS/CCUS Overview Workshop Alexandria, VA October 20, 2013 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board
  • 61. Acknowledgements       This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory. Cost share and research support provided by SECARB/SSEB Carbon Management Partners. Anthropogenic Test CO2 Capture Unit funded separately by Southern Company and partners. 62
  • 62. Presentation Outline   SECARB Early Test, Cranfield, Mississippi –  Project Overview –  Lessons Learned: Large Scale Injection at CO2-EOR Site –  Commercial Significance of CCUS   SECARB Anthropogenic Test, Citronelle, Alabama –  Project Overview –  Lessons Learned: Capture, Transportation & Injection Integration –  Innovative monitoring techniques 63
  • 63. SECARB’s Early Test Cranfield, Mississippi 64
  • 64. SECARB Early Test Monitoring Large Volume Injection at Cranfield Mississippi River Natchez Mississippi 3,000 m depth Gas cap, oil ring, downdip water leg Shut in since 1965 Strong water drive Returned to near initial pressure Illustration by Tip Meckel 65
  • 65. Cranfield Early Test Monitoring: Detailed Area of Study 66
  • 66. Cumulative  CO2 Injected 9,000,000 July,  2013 8,000,000 7,000,000 CO2 (Metric  Tons) 6,000,000 5,000,000 4,000,000 8,073,395 Cumulative Total Cumulative  Volume Injected  West Cumulative  Volume Injected  East 4,146,143 3,927,251 3,000,000 2,000,000 1,000,000 Jul-­‐08 Sep-­‐08 Nov-­‐08 Jan-­‐09 Mar-­‐09 May-­‐09 Jul-­‐09 Sep-­‐09 Nov-­‐09 Jan-­‐10 Mar-­‐10 May-­‐10 Jul-­‐10 Sep-­‐10 Nov-­‐10 Jan-­‐11 Mar-­‐11 May-­‐11 Jul-­‐11 Sep-­‐11 Nov-­‐11 Jan-­‐12 Mar-­‐12 May-­‐12 Jul-­‐12 Sep-­‐12 Nov-­‐12 Jan-­‐13 Mar-­‐13 May-­‐13 Jul-­‐13 0 Time SECARB Early Test: Cumulative CO2 Injected, July 2013 6
  • 67. 6 Time SECARB Early Test: Cranfield Net CO2 Stored, July 2013 Jul-­‐13 4,500,000 May-­‐13 Mar-­‐13 Jan-­‐13 Nov-­‐12 Sep-­‐12 Jul-­‐12 May-­‐12 Mar-­‐12 Jan-­‐12 Nov-­‐11 Sep-­‐11 Jul-­‐11 May-­‐11 Mar-­‐11 Jan-­‐11 Nov-­‐10 Sep-­‐10 Jul-­‐10 May-­‐10 Mar-­‐10 Jan-­‐10 Nov-­‐09 Sep-­‐09 Jul-­‐09 May-­‐09 Mar-­‐09 Jan-­‐09 Nov-­‐08 Sep-­‐08 Jul-­‐08 CO2 (Metric  Tons) 5,000,000 Cranfield  Net  CO2 Stored July,  2013 4,377,834 4,000,000  CO2  Stored 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0
  • 68. Midwest/Ohio Valley Regional Attributes and CO2 Utilization Opportunities U.S. CO2-EOR Activity 119   Dakota Coal Gasification Plant Natural  CO2  Source   Industrial  CO2  Source   Antrim Gas Plant 1   LaBarge Gas Plant Encore Pipeline 6   1   Enid  FerFlizer  Plant   4   McElmo Dome Sheep Mountain Bravo Dome 3   70   Val Verde Gas Plants 2   Jackson Dome 17   Denbury/Green Pipeline Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources. 69 JAF2012_081.PPT August 6, 2012 ExisFng  CO2  Pipeline   CO2  Pipeline  Under   Development     Currently, 119 CO2-EOR projects provide 352,000 B/D. 13   Lost  Cabin  Gas  Plant   2   Number  of  CO2-­‐EOR   Projects     New CO2 pipelines - - the 320 mile Green Pipeline and the 226 mile Encore Pipeline - are expanding CO2-EOR to new oil fields and basins.   The single largest constraint to increased use of CO2-EOR is the lack of available, affordable CO2 supplies.
  • 69. Financial & Production Benefits from “Next Generation” CO2-EOR http://www.netl.doe.gov/energyanalyses/pubs/ NextGen_CO2_EOR_06142011.pdf
  • 70. x x NETL Next Generation CO2 Oil Recovery CO2 Oil Recovery 80 CO2 Requirements CO2 Oil Recovery Billion BBL 25 20 Billion Tons of CO2 70 15 10 5 60 50 40 30 20 10 0 0 Natural Anthropogenic Billion Barrels Oil Context - Total Proven US Oil Reserves @ 2010 = 30.9 Billion BBL BP Annual Statistical Review - 2011 71
  • 71. SECARB’s Anthropogenic Test Citronelle, Alabama 72
  • 72. SECARB Phase III Anthropogenic Test           Carbon capture from Plant Barry equivalent to 25MW. 12 mile CO2 pipeline constructed by Denbury Resources. CO2 injection into ~9.400 ft. deep saline formation (Paluxy) Over 90,000 metric tons injected (October 2013) Monitoring CO2 during injection and 3 years post-injection. 73
  • 73. CO2 absorption Solvent Management Solvent Regeneration Gas Conditioning Plant Barry Capture Unit: 25MW, 500 TPD Compression 74
  • 74. Start with a Good Storage Site •  Proven four-way closure at Citronelle Dome •  Injection site located within Citronelle oilfield where existing well logs are available •  Deep injection interval (Paluxy Form. at 9,400 feet) •  Numerous confining units •  Base of USDWs ~1,400 feet •  Existing wells cemented through primary confining unit •  No evidence of faulting or fracturing (2D) 75
  • 75. SECARB Citronelle: MVA Sample Locations •  One (1) Injector (D-9-7 #2) •  Two (2) deep Observation wells (D-9-8 #2 & D-9-9 #2) •  Two (2) in-zone Monitoring wells (D-4-13 & D-4-14) •  One (1) PNC logging well (D-9-11) •  Twelve (12) soil flux monitoring stations 76
  • 76. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 77
  • 77. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 78
  • 78. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 79
  • 79. SECARB Citronelle: MVA & Closure         Shallow MVA –  Groundwater sampling (USDW Monitoring) –  Soil Flux –  PFT Surveys Deep MVA –  Reservoir Fluid sampling –  Crosswell Seismic –  Mechanical Integrity Test (MIT) –  CO2 Volume, Pressure, and Composition analysis –  Injection, Temperature, and Spinner logs –  Pulse Neutron Capture logs –  Vertical Seismic Profile MVA Experimental tools Closure – plug & abandon wells Baseline 1 year APR 2011 to AUG 2012 Injection 2 years Post 3 years SEPT 2012 to SEPT 2014 OCT 2014 to SEPT 2017 80
  • 80. Future Plans Citronelle UIC Permit Requirement: “… the permittee shall demonstrate to the Department, using monitoring and modeling data and other information that the CO2 is safely confined within the injection zone and that USDWs are not endangered by the CO2 plume.” Citronelle Monitoring Question: What active or passive tests can we perform during site closure that will help demonstrate to regulators that the CO2 is trapped (or the plume is slowing) and no longer an endangerment to USDWs? 81
  • 81. CO2  Storage  in  UnconvenHonal  Gas   FormaHons  with  Enhanced  Gas   Recovery  PotenHal   Nino  Ripepi,  Assistant  Professor,   Department  of  Mining  &  Minerals  Engineering   Virginia  Center  for  Coal  and  Energy  Research   Virginia  Tech       CMTC CCS Session October 20, 2013, Alexandria, VA
  • 82. CO2  Storage  and  Enhanced  Coalbed   Methane  Recovery  (ECBM)   •  Shallow  reservoir  with  low  P  &  T  can  result  in   lower  compression  costs   •  Gas  is  stored  in  coal  securely  by  adsorpFon   rather  than  by  free  storage  or  soluFon   •  Unmineable  Coal  Seams:  200  Billion  Tons  of   Capacity  in  the  U.S.  –  25  years  of  current   GHG  emissions  (DOE)   •  ECBM  potenFal  ~  150  Tcf  (Reeves,  2002)   •  Central  App:    >  than  6,000  CBM  wells  
  • 83. CBM  and  ECBM  Mechanisms   Gas  Content   Coalbed  Methane  ProducFon   (CBM)   Enhanced  Coalbed  Methane   ProducFon  (ECBM)   VL VL/2 Dewatering   Under  saturated   PL (i)  Dewatering:  pressure  ,   effecFve  stress  ,  fracture   apertures    permeability     (ii)  CH4  releasematrix  shrinkage   and  zero  volume  change   condiFon,  fracture  apertures     ,  permeability     •  Net  Permeability:      CompeFng  effects  (i)-­‐(ii)     Pressure   CO2 CH4 (i)  CO2  greater  affinity  to  coal   than  CH4     (ii)  Depending  on  coal  rank  coal   matrix  can  adsorb  twice  to  as   hish  as  ten  Fmes  more  CO2    as   CH4     (iii)  When  CO2  is  adsorbed  matrix   swells;  under  zero  volume   change  condiFon,  fracture   apertures    ,  permeability    
  • 84. Virginia  Tech  InjecFon  Tests    (Funded  by  NETL/DOE,  Managed  or  in   Partnership  with  SECARB/SSEB)   •  Performed  Pilot  CO2  InjecFon  Field  Tests  in   Virginia  (1,000  tons)  and,  under  the  direcFon   of  the  GSA,  in  Alabama  (300  tons)  (Phase  II,   2005–2010)   •  In  Progress,  a  Small-­‐Scale  InjecFon  Test  in   Central  Appalachia  (20,000  tons)  into   UnconvenHonal  Storage  Reservoirs  with     Emphasis  on  Enhanced  Coalbed  Methane   Recovery  (2011–2015)  
  • 85. Russell  County  -­‐  Coal  Seams  Stage 4 Monitoring Well RU-84 BD114 Injection Well 9.6 m (3 ft) Monitoring Well Greasy Creek 1 Seaboard 2 Lower Seabord 1&2 Lower Seaboard 3 Upper Horsepen 2&3 Stage 3 9.8 m (3 ft) Middle Horsepen 1 Middle Horsepen 2 Pocahontas 11 Pocahontas 10 Lower Horsepen 1 Lower Horsepen 2 Stage 2 4th Hydraulic Fracture Zone 9.3 m (2.8 ft) 3rd Hydraulic Fracture Zone Stage 1 2nd Hydraulic Fracture Zone 1st Hydraulic Fracture Zone Pocahontas 9 Pocahontas 8-1 Pocahontas 8-2 Pocahontas 7-1A Pocahontas 7-1B Pocahontas 7-2 Pocahontas 7-3 7.6 m !(2.3 ft) Pocahontas 6 Pocahontas 5 Pocahontas 4-1 Pocahontas 4-2 Pocahontas 3-1 Pocahontas 3-4
  • 86. CO2  InjecHon  
  • 87. 09 8/ /0 02 09 5/ /0 02 09 2/ /0 02 09 09 0/ /3 01 7/ /2 01 09 4/ /2 10 10 10 10 10 10 10 10 10 11 11 Injection Well (psia) CO2 Process Temperature (F) CO2 Injection Rate (tons/day) 900 90 800 80 700 70 600 60 500 50 400 40 300 30 200 20 100 10 0 0 CO2 Injection Rate (tons/day) 1000 01 09 1/ /2 01 09 09 8/ /1 01 09 5/ /1 01 2/ /1 01 09 9/ /0 01 Injection Pressure (psia) Temperature (Degrees F) CO2  InjecFon   100
  • 88. Tracer  Injec-on   January  21,  2009  -­‐   500  ml  of  the  PTMCH   tracer   Miskovic,  2011  
  • 89. 0   03/22/11   02/19/11   01/20/11   140   100   70   80   60   50   60   40   40   30   20   20   10   0   Gas  ComposiHon  (%)   Methane   12/20/10   11/20/10   10/20/10   09/20/10   08/20/10   Carbon  Dioxide   07/21/10   06/20/10   05/21/10   04/20/10   03/21/10   02/18/10   BD-­‐114  Flowback   01/19/10   12/19/09   11/19/09   10/19/09   09/19/09   08/19/09   07/20/09   06/19/09   05/20/09   Gas  ProducHon  (Mcf/day)   Russell  County  Flowback   Nitrogen   100   90   120   80  
  • 90. CO2  InjecFon  Decline-­‐Curve  Analysis   Phase  II  InjecFon  Well  RU-­‐84  (BD-­‐114)   Gas Production, Mcf/month Post CO2 Injection EUR = 534 MMcf Pre CO2 Injection EUR = 319 MMcf Shut-in Period with CO2 Injection mid November ‘08 – mid May ‘09
  • 91. Conclusions  from  Russell  County   InjecHon  Test   •  1,007  tons  of  CO2  injected  into  19  coal  seams  in  2009   •  InjecFon  rate  higher  than  anFcipated  at  an  average  of   over  40  tons  per  day,  but  decrease  at  the  end  to  an   injecFon  rate  of  <20  tons  per  day   •  ECBM  measured  in  2  wells  (Unsustainable  due  to  small   CO2  volume)   •  Tracer  detecFon  at  off-­‐set  wells,  but  no  measured    CO2   breakthrough   •  Flowback   –  ProducFon  returned  to  beser  than  pre-­‐injecFon  rates   –  Flowback  showed  N2,  CH4  then  CO2  desorpFon  
  • 92. Current  Small-­‐Scale  InjecHon  Test  in   Central  Appalachia      Objectives:   Inject 20,000 metric tons of CO2 into 3 CBM wells over a one-year period in Buchanan County, VA   Perform a small 300-1,000 ton Huff and Puff test in a horizontal shale gas well in Morgan County, TN  Duration:   4 years, October 1, 2011–September 30, 2015  Funding:   Total Project Value: $14,374,090   DOE/Non-DOE: $11,499,265 / $2,874,825
  • 93. Field demonstration in Buchanan County, VA   Scheduled October 2013
  • 94. CO2  Plume  by  Layer  
  • 95. MVA program for Buchanan County test Repeated from Russell County test: •  •  •  Atmospheric monitoring with IRGAs to measure CO2 concentration Surface methods including soil CO2 flux, surface water sampling and shallow tracer detection Offset well testing for gas composition (CO2 concentration, tracers, ECBM) New components: •  Multiple tracer injection •  3 monitoring wells by zone •  Surface deformation measurement •  Tomographic fracture imaging •  Passive measurement of seismic energy emissions (similar to microseismic monitoring)
  • 96. Three monitoring wells •  Location factors: • Access • Predicted plume growth • Specific tests • Future use •  Formation logging: • Reservoir saturation • Sonic • Others TBD •  Gas content: • CO2 • Methane • Tracers •  Core collection
  • 97. Chattanooga Shale Study Area
  • 98. Shale Test– Injection and

×