SlideShare a Scribd company logo
1 of 11
Download to read offline
Diagnostics
The pediatric electrocardiogram
Part II: Dysrhythmias
Matthew O'Connor MDa
, Nancy McDaniel MDb
, William J. Brady MDc,⁎
a
Department of Pediatrics, Children's Medical Center, University of Virginia Health System, Charlottesville, VA 22908, USA
b
Division of Cardiology, Department of Pediatrics, Children's Medical Center, University of Virginia Health System,
Charlottesville, VA 22908, USA
c
Department of Emergency Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
Received 27 July 2007; accepted 31 July 2007
Abstract The following article in this series will describe common arrhythmias seen in the pediatric
population. Their definitions and clinical presentations along with electrocardiogram (ECG) examples
will be presented. In addition, ECG changes seen in acute toxic ingestions commonly seen in children
will be described, even if such ingestions do not produce arrhythmias per se. Disturbances of rhythm
seen frequently in patients with unrepaired and corrected congenital heart disease will be more fully
discussed in the third article of this series. Numerous classification schemes for arrhythmias exist; in this
article arrhythmias will be grouped based upon their major ECG manifestations.
© 2008 Elsevier Inc. All rights reserved.
1. Introduction
The following article in this series will describe common
arrhythmias seen in the pediatric population. Their defini-
tions and clinical presentations along with ECG examples
will be presented. In addition, ECG changes seen in acute
toxic ingestions commonly seen in children will be
described, even if such ingestions do not produce arrhyth-
mias per se. Disturbances of rhythm seen frequently in
patients with unrepaired and corrected congenital heart
disease will be more fully discussed in the third article of this
series. Numerous classification schemes for arrhythmias
exist; in this article arrhythmias will be grouped based upon
their major ECG manifestations.
2. Bradyarrhythmias
Bradyarrhythmias are uncommon causes of ECG
abnormalities in children without congenital heart disease;
they are seen frequently in patients with congenital heart
disease who have undergone surgical manipulation of the
atria (eg, Fontan procedure, atrial septal defect repair,
atrioventricular [AV] canal repair, and older “atrial switch”
operations for transposition of the great arteries). Sinus
bradycardia is defined by the presence of a sinus rhythm that
is abnormal only in that it is slower than expected for the
child's age (Fig. 1). Specific age-related norms were
described in the previous article, but in general a heart
rate less than 100 beats per minute (bpm) in children
younger than 3 years old, less than 60 bpm in children 3 to
9 years old, less than 50 bpm in children 9 to 16 years old,
and less than 40 in older children and adolescents should
entertain the diagnosis of sinus bradycardia [1]. As in adults,
several factors must be considered before making this
⁎ Corresponding author.
E-mail address: wb4z@virginia.edu (W.J. Brady).
www.elsevier.com/locate/ajem
0735-6757/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.ajem.2007.07.034
American Journal of Emergency Medicine (2008) 26, 348–358
diagnosis, particularly with regard to sleeping vs the waking
state and level of athletic training.
Sinus arrest (also known as sinus pause) reflects the
failure of the sinoatrial node to propagate impulses. If the
period of arrest is prolonged, escape rhythms may “take
over” the function of the sinoatrial, and these escape rhythms
may occur at the AV nodal, bundle of His, or ventricular
level. In children, the mean maximum duration of sinus
pause (F2 SD) was found to be 1.82 seconds [2].
3. Atrioventricular block
The generic term AV block implies a disturbance of
impulse conduction from the atria to the ventricles. The
anatomic locations of such disturbances vary depending on
the underlying mechanism of the arrhythmia. Generally, AV
block is categorized into first-degree (1°), second-degree
(2°), and third-degree (3°) subtypes. First-degree block
(Fig. 2) is identified electrocardiographically by a prolonged
Fig. 1 Sinus bradycardia in a child with hypothyroidism. The heart rate varies between 30 and 40 bpm.
Fig. 2 First-degree AV block in a young boy undergoing Holter monitoring. Note the markedly prolonged PR interval.
349The pediatric ECG
PR interval for age. The reader is referred to age-related
pediatric norms as discussed in Part I and other age-related
norms discussed in this article [3]. First-degree block is
typically asymptomatic and generally does not imply
underlying disease of the conduction system. It may be
seen in the sleeping state [4], in trained athletes with low
resting heart rates [5], and rarely in Lyme disease and
myocarditis [6].
Second-degree AV block is divided into 2 categories: type
I (Wenkebach), in which there is progressive prolongation of
the PR interval until failure of AV conduction occurs
(Fig. 3A), and type II (Möbitz), in which random “dropping”
or failure of AV conduction occurs without PR prolongation
(Fig. 3B). Of the two, type II block is more ominous and may
progress to complete (3°) heart block. Type I 2° block is
again a common variant of normal, particularly in trained
athletes [5]. It is also common after repair of structural
congenital heart disease [7]. The presence of Möbitz block or
any symptomatic 2° block warrants pediatric cardiology
consultation with consideration given to pacing.
Complete or 3° heart block is defined by the absence of
conduction between the atria and ventricles. Complete heart
Fig. 3 A, Type I second-degree AV block from a Holter recording in a 7-year-old boy with congenital complete heart block. B, Type II
second-degree AV block with wide QRS complex.
Fig. 4 Third-degree AV block seen in the same patient as in Fig. 3A. Note that there is no relationship between P waves and QRS complexes.
350 M. O’Connor et al.
block is manifested by AV dissociation in which regularly
spaced P waves are not related temporally to the ventricular
escape rhythm (Fig. 4). The QRS duration may be normal or
prolonged depending on the location of the block; more
proximal blocks (ie, near the AV node) will typically result in
a normal QRS duration. Congenital complete heart block
occurs in infants of mothers carrying anti-Ro and anti-La
antibodies; mothers may or may not have clinical symptoms
of lupus [8]. Complete heart block is also a known
complication of surgery for congenital heart disease and
has a significant effect on morbidity and mortality [9].
Complete heart block is almost always symptomatic and
usually requires dual-chamber pacemaker implantation.
The bundle branches are the downstream limbs of the
bundle of His and allow for nearly synchronous depolariza-
tion of the left and right ventricles, which is important in
maintaining cardiac synchrony. Prolongation of conduction
through the bundle branches results in QRS prolongation and
is known as bundle branch block (BBB). Bundle branch
block can affect the right or left bundle branches (RBBB,
LBBB) and be classified as complete or incomplete, based
upon whether there is QRS prolongation for age. Incomplete
RBBB is commonly seen in pediatric ECGs and is
manifested by an rSR′ pattern in lead V1 and a small S
wave in lead V6; the initial upstroke of the QRS is normal
with a delay in the terminal portion of the QRS complex
(Fig. 5). Right bundle branch block is detected in V1; the
Fig. 5 Incomplete RBBB in a 3-week-old male infant after
tetralogy of Fallot repair. Note the rSR′ pattern in leads V1 and V2
with minimal QRS prolongation.
Fig. 6 Complete RBBB in a 19-year-old adolescent girl with
repaired tetralogy of Fallot. Note the similarity of the rSR′ pattern to
the previous figure, with this ECG manifesting QRS prolongation.
Fig. 7 Left bundle branch block. Note the prolonged QRS
duration in the lateral precordial lead V5.
351The pediatric ECG
initial upstroke of the QRS is delayed (Fig. 6) with the
terminal portion of normal duration, whereas LBBB is
typically manifested by QRS prolongation in V6 (Fig. 7).
Bundle branch blocks may be seen in a variety of conditions
and is a frequent finding after surgery for congenital heart
disease, particularly in which there has been a ventriculot-
omy (ie, tetralogy of Fallot) [10].
4. Normal QRS duration tachycardias
Numerous schemes exist for classifying tachycardias; a
useful and simple way is to categorize them based upon the
QRS duration. In general, tachycardias with a normal QRS
duration for age can be considered as originating superior to
the AV node, whereas tachycardias associated with QRS
prolongation typically originate at locations inferior to the
AV node. This scheme is not perfect but allows for ease
of organization.
Sinus tachycardia is usually simple to recognize on the
ECG (Fig. 8). For the diagnosis of sinus tachycardia to be
established, a P wave must precede every QRS complex and
the P waves must have a normal axis (discussed previously).
In adults, a heart rate greater than 100 bpm is considered
tachycardia. In children, this rate is age dependent but
general guidelines exist; heart rates greater than 160 bpm in
infants and greater than 140 bpm in children suggest sinus
tachycardia [11]. Sinus tachycardia often reflects anxiety,
dehydration, or fever, and can be considered an “appropriate”
physiologic response to the underlying disturbance. “Inap-
propriate” sinus tachycardia implies underlying primary
cardiac disturbance and is often seen in myocarditis or
congestive heart failure. Although a wide range of heart rates
may be seen in sinus tachycardia, the sinus node rarely paces
at heart rates greater than 220 bpm; when greater heart rates
are seen, sinus tachycardia is uncommon. Ectopic atrial
tachycardias can be difficult to distinguish from so-called
supraventricular tachycardias (SVTs; see below), particu-
larly at high rates in which the P wave is “buried” within the
T wave of the preceding QRS complex (Fig. 9).
Atrial flutter and atrial fibrillation are quite rare in
pediatric patients. However, a form of atrial flutter can be
seen after surgery for congenital heart disease, particularly in
patients with Fontan-type operations and atrial switch
procedures for transposition of the great arteries [12]. Atrial
flutter is identified by so-called sawtooth waves representing
the rapid atrial rate with typically normal QRS duration.
Atrial fibrillation demonstrates chaotic irregular atrial
activity with an “irregularly irregular” ventricular rate;
QRS is usually normal in duration (Fig. 10).
Supraventricular tachycardia is one of the most common
arrhythmias encountered in pediatric patients (Fig. 11). The
term supraventricular tachycardia is confusing and does not
imply a single mechanism, however. Supraventricular
tachycardia includes any arrhythmia that requires atrial or
AV nodal tissue for their initiation and propagation, and
includes atrial tachycardias, atrial fibrillation, atrial flutter,
nodal tachycardia, junctional ectopic tachycardia, and others
[13] For the purposes of this discussion, SVT will be defined
as a paroxysmal tachyarrhythmia manifested by the absence
of P waves and by the presence of normal QRS complexes.
In children, there are 2 common mechanisms of SVT [14].
Both involve reentry mechanisms. In AV nodal reentry
tachycardia the reentry mechanism involves the AV node,
and in AV reentry tachycardia reentry proceeds via an
accessory pathway near, but not including, the AV node. Two
mechanisms are often indistinguishable via ECG. Preexcita-
tion syndromes are more common in children with AV
reentry tachycardia and are discussed below. The treatment
of SVT involves vagal maneuvers, adenosine, and in rare
cases synchronized cardioversion and is discussed in further
detail elsewhere [15].
Two additional SVTs occasionally encountered in pedia-
trics include junctional ectopic tachycardia and permanent
junctional reciprocating tachycardia (Fig. 12). Junctional
ectopic tachycardia is a common and frequently hemodyna-
mically deleterious rhythm seen in postoperative patients and
is discussed in a subsequent article. Permanent junctional
reciprocating tachycardia is a chronic, incessant form of
tachycardia involving an accessory pathway that presents in
infants and is electrocardiographically manifested by a
Fig. 8 Sinus tachycardia detected on Holter monitoring of a 6-year-old girl with near syncope. The heart rate is regular at 157 bpm.
352 M. O’Connor et al.
prolonged R-P interval [16]. It frequently causes a cardio-
myopathy which responds to rate control, although achieve-
ment of normal sinus rhythm can be extremely difficult.
5. Abnormal QRS duration tachycardias
Tachycardias demonstrating prolonged QRS duration for
age imply a ventricular origin to the arrhythmia. Ventricular
arrhythmias also demonstrate “bizarre” QRS morphologies.
Ventricular arrhythmias are uncommon in children and
usually arise in the setting of severe electrolyte disarray,
ingestion, or rare inherited disorders of cardiac conduction.
Ventricular arrhythmias, however, are poorly tolerated
hemodynamically so prompt recognition and initiation of
therapy are vital.
Premature ventricular contractions (PVCs) are a frequent
finding in children and may be cause for concern in rare
cases (Fig. 13). They are manifested on the ECG by bizarrely
shaped, wide QRS complexes with the associated T wave
usually pointing in the opposite direction of the QRS
complex. A compensatory pause after the PVC will be seen.
Premature ventricular contractions of uniform morphology
are less concerning than those of multiple forms. Ventricular
tachycardia consists of 3 or more successive PVCs at a
regular rate of 120 to 180 bpm (Fig. 14). As in adults, it can
degenerate into ventricular fibrillation, a usually lethal
rhythm unless promptly treated. Several special conditions
associated with ventricular tachycardia in children should be
Fig. 10 Atrial flutter in a neonate without structural congenital heart disease. Note the rapid ventricular rate and distinctive flutter waves
seen best in leads aVR and aVF.
Fig. 9 Ectopic atrial tachycardia captured on Holter monitoring of a young girl. Note how the P waves are difficult to separate from the QRS
complex owing to the high heart rate.
353The pediatric ECG
mentioned. The Brugada syndrome is a rare, autosomal
dominant, and frequently lethal disorder associated with
bouts of ventricular tachycardia and sudden death. A peculiar
“saddle-form” ST-segment elevation in the right precordial
leads with a family history suggests the diagnosis [17].
Arrhythmogenic right ventricular dysplasia is another rare
inherited disorder causing ventricular tachycardia and
sudden death in affected individuals due to the replacement
Fig. 12 Narrow complex tachycardia in an 8-month-old infant presenting with feeding difficulties, poor weight gain, and cardiomyopathy.
Electrophysiologic study revealed the diagnosis of permanent junctional reciprocating tachycardia.
Fig. 11 Supraventricular tachycardia in a 10-year-old boy with palpitations and a rapid heart rate. Note the regular rate, narrow QRS
complex, and absence of P waves. The tachycardia resolved with intravenous adenosine. Final diagnosis was orthodromic reciprocating
tachycardia due to an accessory pathway.
354 M. O’Connor et al.
of right ventricular myocardium with fatty and fibrous tissue.
Patients with this disorder typically present after puberty
with ventricular tachycardia, and the interval ECG is notable
for a persistent juvenile pattern of T-wave inversion and a
widened QRS complex in right precordial leads.
6. Ventricular preexcitation syndromes
The term preexcitation refers to ventricular depolarization
that is earlier than expected. Preexcitation can occur via
either a reentry pathway or an accessory pathway [18]. In
either case, the potential for sustained and dangerous
tachycardia exists because the AV node no longer “protects”
the ventricles from excessively high atrial rates. The
electrocardiographic appearance of preexcitation (Fig. 15)
consists of (a) normal P-wave morphology and axis, (b)
shortened PR interval, (c) prolonged QRS complex with
initial “slurring” (delta wave), and (d) Q waves and T-wave
abnormalities in what is termed a pseudoinfarction pattern.
The most common syndrome associated with preexcitation
in children and adults is the Wolff-Parkinson-White (WPW)
syndrome. In patients with WPW, the most commonly
encountered arrhythmia is a paroxysmal reentry SVT.
Detection of the “WPW pattern” (ie, delta wave with a
Fig. 14 Unprovoked ventricular tachycardia from Holter monitoring in a 13-year-old adolescent girl with syncope.
Fig. 13 Multiple PVCs in a 17-year-old adolescent boy with a history of transposition of the great vessels after arterial switch procedure.
Note the bizarre, wide QRS complexes interspersed with QRS complexes of normal configuration.
355The pediatric ECG
prolonged QRS complex) in an asymptomatic child warrants
cardiology referral, although the actual risk of sudden death
in this population is likely quite low [19].
7. Tachycardias associated with a prolonged
QT interval
Evaluation of the QT interval is an essential aspect of
ECG interpretation. Norms for the corrected QT interval
have been published and were discussed in the previous
article of this series. Prolongation of the QT interval is often
asymptomatic but puts the patient at risk of ventricular
arrhythmias, the most common of which is torsades de
pointes. Torsades de pointes is a form of polymorphic
ventricular tachycardia that has the ECG appearance of
“twisting along a string.” Prolongation of the QT interval
can be due to a multitude of factors, congenital and
acquired. QT prolongation is associated with hypokalemia
and hypocalcemia; it is also seen with administration of
antiarrhythmic agents. Many medications are associated
Fig. 16 Prolonged QT interval in an 18-year-old adolescent girl with familial long QT syndrome and a history of cardiac arrest. The QT
interval calculated by Bazett's formula is 506 milliseconds.
Fig. 15 Delta waves seen in a child with WPW syndrome who presented with SVT; preexcitation did not manifest until the tachycardia
resolved.
356 M. O’Connor et al.
with QT prolongation as well, particularly antibiotics and
older antipsychotics.
Congenital forms of the long QT syndrome warrant
discussion in pediatric patients. Congenital long QT
syndrome is a cause of pediatric sudden death and has
been associated with sudden death during sleep, exercise,
and perhaps a small subset of infants dying of sudden infant
death syndrome [20]. The 2 most common inherited long QT
syndromes are known eponymously as the Romano-Ward
and Jervell/Lange-Nielsen syndromes and are caused by
known mutations in cardiac ion channels. Congenital long
QT syndrome is a common cause of sudden death
attributable to cardiac causes in children; in an international
registry of long QT patients, 8% died suddenly during 5 years
of follow-up [21]. Certainly, identification of a prolonged QT
interval in a pediatric patient warrants pediatric cardiology
referral and close follow-up (Fig. 16).
8. Toxicology
Children frequently present to EDs after ingestion of
medications or other toxins, unintentionally or otherwise.
Obtaining an ECG is an important aspect of evaluating these
patients. A number of agents cause QRS prolongation,
mainly via blockade of the sodium channels responsible for
depolarization during phase 0 of the myocardial action
potential. Examples of such agents include tricyclic
antidepressants, diphenhydramine, propanolol, hydroxy-
chloroquine, and many antiarrhythmic agents [22]. QRS
prolongation in the setting of sodium channel blockade,
when severe, may lead to asystole unless therapy with saline
or sodium bicarbonate is administered.
Tricyclic antidepressant ingestion warrants special
attention owing to the multitude of effects on the ECG
[23]. The ECG presentation of such toxicity is dependent
on the specific medication ingested as well as the ingested
dose. Tricyclic antidepressants have 4 important effects:
(1) inhibition of presynaptic neurotransmitter reuptake; (2)
α-adrenergic receptor blockade; (3) anticholinergic effects;
and (4) sodium channel blockade. Collectively, these can
lead to tachycardia, QRS prolongation, and QT prolonga-
tion (Fig. 17).
β-Blockers and calcium-channel blockers are commonly
used medications in adults that not infrequently are
unintentionally ingested by children. β-Blockers are phar-
macologically heterogeneous with each agent exerting
single or multiple effects at β1, β2, and α1 receptors. Some
β-blockers contain sodium-channel blocking ability and may
prolong the QRS interval. Sotalol, a class III antiarrhythmic
agent, contains potassium channel blocking ability and can
cause QT interval prolongation [24]. β1 Receptors, however,
located in the myocardium, are largely responsible for the
cardiovascular sequelae of β-blocker overdose. Electrocar-
diogram manifestations of ingestion generally include
bradycardia, various grades of AV block, and QRS complex
widening. [25].
Calcium channel blockers cause predictable but non-
specific changes in the ECG. Common changes include
hypotension, bradycardia, and AV blocks [26]. Because
many current formulations of calcium channel blockers are
of the extended-release variety, symptoms may be delayed
for up to several hours postingestion [27]. Another
consideration in evaluating calcium channel overdose is the
cardioselectivity of the agent. Older agents such as nifedipine
may exert a predominantly vascular effect at lower doses,
resulting in hypotension with reflex bradycardia. Newer
Fig. 17 Sinus tachycardia with widened QRS complex, deep S wave in lead I, and prominent R wave in lead aVr. This ECG was recorded in
a lethargic adolescent with tricyclic antidepressant ingestion.
357The pediatric ECG
agents such as verapamil or diltiazem may result in
bradycardia and conduction disturbances without hypoten-
sion. At sufficient doses, however, selectivity is lost.
In summary, arrhythmias in otherwise healthy children are
relatively uncommon in the pediatric population but prompt
recognition will prevent excess morbidity and mortality. The
incidence of arrhythmias in patients with a history of
congenital heart disease is markedly higher and the ECG
manifestations of such arrhythmias in this patient population
will be described in the next article of this series.
References
[1] Martin AB, Kugler JD. Sinus node dysfunction. In: Gillette PC,
Garson Jr A, editors. Clinical pediatric arrhythmias. Philadelphia:
W.B. Saunders; 1999. p. 51-62.
[2] Southall DP, Richards J, Mitchell P, et al. Study of cardiac rhythm in
healthy newborn infants. Br Heart J 1980;43:14-20.
[3] Davignon A, Rautaharju P, Boiseelle E, et al. Normal ECG standards
for infants and children. Pediatr Cardiol 1979;1:123-52.
[4] Nagashima M, Matsushima M, Ogawa A, et al. Cardiac arrhythmias in
healthy children revealed by 24-hour ambulatory ECG monitoring.
Pediatr Cardiol 1987;8:103-8.
[5] Viitasalo MT, Kala R, Eisalo A. Ambulatory electrocardiographic
findings in young athletes between 14 and 16 years of age. Eur Heart J
1984;5:2-6.
[6] Chan TC, Brady WJ, Pollack M. Electrocardiographic manifestations:
acute myopericarditis. J Emerg Med 1999;17:865-72.
[7] Ross BA, Gillette PC. Atrioventricular block and bundle branch block.
In: Gillette PC, Garson Jr A, editors. Clinical pediatric arrhythmias.
Philadelphia: W.B. Saunders; 1999. p. 63-77.
[8] Brucato A, Franceschini F, Gasparini M, et al. Isolated congenital
complete heart block: longterm outcome of mothers, maternal antibody
specificity and immunogenetic background. J Rheumatol 1995;22:
533-40.
[9] Weindling SN, Saul JP, Gamble WJ, et al. Duration of complete
atrioventricular block after congenital heart disease surgery. Am J
Cardiol 1998;82:525-7.
[10] Gelband H, Walso AL, Kaiser GA, et al. Etiology of right bundle-
branch block in patients undergoing total correction of tetralogy of
Fallot. Circulation 1971;44:1022-33.
[11] Park MK, Gunteroth WG. How to read pediatric ECGs. St. Louis:
Mosby; 1992. p. 110-30.
[12] Ghai A, Harris L, Harrison DA, et al. Outcomes of late atrial
tachyarrhythmias in adults after the Fontan operation. J Am Coll
Cardiol 2001;37:585-92.
[13] Fish FA, Benson Jr DW. Disorders of cardiac rhythm and conduction.
In: Allen HD, Gutgesell HP, Clark EB, et al, editors. Heart disease in
infants, children, and adolescents, including the fetus and young adult.
Philadelphia: Lippincott Williams & Wilkins; 2001. p. 482-533.
[14] Van Hare GF. Supraventricular tachycardia. In: Gillette PC, Garson Jr
A, editors. Clinical pediatric arrhythmias. Philadelphia: W.B. Saun-
ders; 1999. p. 97-120.
[15] Chun TU, Van Hare GF. Advances in the approach to treatment of
supraventricular tachycardia in the pediatric population. Curr Cardiol
Rep 2004;6:322-6.
[16] Vaksmann G, D'Hoinne C, Lucet V, et al. Permanent junctional
reciprocating tachycardia in children: a multicentre study on clinical
profile and outcome. Heart 2006;92:101-4.
[17] Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome:
report of the second consensus conference: endorsed by the Heart
Rhythm Society and the European Heart Rhythm Association.
Circulation 2005;111:659-70.
[18] Lindbergh JR, Brady WJ. Preexcitation syndromes. In: Chan TC,
Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine
and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 112-7.
[19] Sarubbi B, Scognamiglio G, Limongelli G, et al. Asymptomatic
ventricular pre-excitation in children and adolescents: a 15 year follow
up study. Heart 2003;89:215-7.
[20] Schwartz PJ, Stramba-Badiale M, Segantini A, et al. Prolongation of
the QT interval and the sudden infant death syndrome. N Engl J Med
1998;338:1709-14.
[21] Garson Jr A, Dick M, Fournier A, et al. The long QT syndrome in
children: an international study of 287 patients. Circulation 1993;87:
1866-72.
[22] Holstege CP, Baer AB. Other preexcitation syndromes. In: Chan TC,
Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine
and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 274-8.
[23] Harrigan RA, Brady WJ. ECG abnormalities in tricyclic antidepressant
ingestion. Am J Emerg Med 1999;17:387-93.
[24] Link MS, Foote CB, Sloan SB, et al. Torsade de pointes and prolonged
QT interval from surreptitious use of sotalol: use of drug levels in
diagnosis. Chest 1997;112:556-7.
[25] Barry JD, Williams SR. Beta-adrenergic blocking agents. In: Chan TC,
Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine
and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 260-2.
[26] Offerman SR, Ly BT. Calcium channel antagonists. In: Chan TC,
Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine
and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 263-5.
[27] Belson MG, Gorman SE, Sullivan K, et al. Calcium channel blocker
ingestions in children. Am J Emerg Med 2000;18:581-6.
358 M. O’Connor et al.

More Related Content

What's hot

His Resynchronization Versus Biventricular Pacing in Patients With Heart Fail...
His Resynchronization VersusBiventricular Pacing inPatients With Heart Fail...His Resynchronization VersusBiventricular Pacing inPatients With Heart Fail...
His Resynchronization Versus Biventricular Pacing in Patients With Heart Fail...Shadab Ahmad
 
Heart failure syndrome1
Heart failure syndrome1Heart failure syndrome1
Heart failure syndrome1asadsoomro1960
 
DM cardiology Exam Spotter
DM cardiology Exam SpotterDM cardiology Exam Spotter
DM cardiology Exam SpotterPRAVEEN GUPTA
 
Cardiology board mc qs.ppt2
Cardiology board mc qs.ppt2Cardiology board mc qs.ppt2
Cardiology board mc qs.ppt2hospital
 
Early repolarisation syndrome (2)
Early repolarisation syndrome (2)Early repolarisation syndrome (2)
Early repolarisation syndrome (2)DR. VINIT KUMAR
 
Selective vs nonselective his bundle capture
Selective vs nonselective his bundle captureSelective vs nonselective his bundle capture
Selective vs nonselective his bundle captureSergio Pinski
 
Benign Early Repolarization
Benign Early RepolarizationBenign Early Repolarization
Benign Early RepolarizationGromimd
 
Arrhythmogenic right ventricular dysplasia
Arrhythmogenic right ventricular dysplasiaArrhythmogenic right ventricular dysplasia
Arrhythmogenic right ventricular dysplasiamohamed zannoun
 
Qrs and crt final in english
Qrs and crt final in englishQrs and crt final in english
Qrs and crt final in englishSergio Pinski
 
Faisal al atawi study2
Faisal al atawi study2Faisal al atawi study2
Faisal al atawi study2alatawi2
 

What's hot (20)

INTERESTING ECGS
INTERESTING ECGSINTERESTING ECGS
INTERESTING ECGS
 
Early repolarization
Early repolarizationEarly repolarization
Early repolarization
 
His Resynchronization Versus Biventricular Pacing in Patients With Heart Fail...
His Resynchronization VersusBiventricular Pacing inPatients With Heart Fail...His Resynchronization VersusBiventricular Pacing inPatients With Heart Fail...
His Resynchronization Versus Biventricular Pacing in Patients With Heart Fail...
 
Heart failure syndrome1
Heart failure syndrome1Heart failure syndrome1
Heart failure syndrome1
 
DM cardiology Exam Spotter
DM cardiology Exam SpotterDM cardiology Exam Spotter
DM cardiology Exam Spotter
 
Cardiology board mc qs.ppt2
Cardiology board mc qs.ppt2Cardiology board mc qs.ppt2
Cardiology board mc qs.ppt2
 
Early repolarisation syndrome (2)
Early repolarisation syndrome (2)Early repolarisation syndrome (2)
Early repolarisation syndrome (2)
 
Selective vs nonselective his bundle capture
Selective vs nonselective his bundle captureSelective vs nonselective his bundle capture
Selective vs nonselective his bundle capture
 
Brugada syndrome
Brugada syndromeBrugada syndrome
Brugada syndrome
 
Sinus node dysfunction
Sinus node dysfunctionSinus node dysfunction
Sinus node dysfunction
 
Benign Early Repolarization
Benign Early RepolarizationBenign Early Repolarization
Benign Early Repolarization
 
Arrhythmogenic right ventricular dysplasia
Arrhythmogenic right ventricular dysplasiaArrhythmogenic right ventricular dysplasia
Arrhythmogenic right ventricular dysplasia
 
interesting ECG,CXR,ECHO
interesting ECG,CXR,ECHOinteresting ECG,CXR,ECHO
interesting ECG,CXR,ECHO
 
interesting ECG,CXR,ECHO, EP
interesting ECG,CXR,ECHO, EPinteresting ECG,CXR,ECHO, EP
interesting ECG,CXR,ECHO, EP
 
Qrs and crt final in english
Qrs and crt final in englishQrs and crt final in english
Qrs and crt final in english
 
ECG/X-ray Quiz
ECG/X-ray QuizECG/X-ray Quiz
ECG/X-ray Quiz
 
Ventricular fibrillation eMedicine Article
Ventricular fibrillation eMedicine ArticleVentricular fibrillation eMedicine Article
Ventricular fibrillation eMedicine Article
 
Faisal al atawi study2
Faisal al atawi study2Faisal al atawi study2
Faisal al atawi study2
 
CRT Case-Based Troubleshooting
CRT Case-Based TroubleshootingCRT Case-Based Troubleshooting
CRT Case-Based Troubleshooting
 
ARVD
ARVDARVD
ARVD
 

Similar to The pediatric electrocardiogram 2

The pediatric electrocardiogram 1
The pediatric electrocardiogram 1The pediatric electrocardiogram 1
The pediatric electrocardiogram 1gisa_legal
 
The pediatric electrocardiogram 3
The pediatric electrocardiogram 3The pediatric electrocardiogram 3
The pediatric electrocardiogram 3gisa_legal
 
Simplified pediatric electrocardiogram interpretation
Simplified pediatric electrocardiogram interpretationSimplified pediatric electrocardiogram interpretation
Simplified pediatric electrocardiogram interpretationnasr311
 
Arrhythmia Recognition & Management
Arrhythmia Recognition & ManagementArrhythmia Recognition & Management
Arrhythmia Recognition & Managementyuyuricci
 
The pediatric ecg
The pediatric ecgThe pediatric ecg
The pediatric ecggisa_legal
 
Introduction to ecg
Introduction to ecgIntroduction to ecg
Introduction to ecgS P
 
Ekg Cases 7 15 09 Level 2 Part 1
Ekg Cases 7 15 09 Level 2 Part 1Ekg Cases 7 15 09 Level 2 Part 1
Ekg Cases 7 15 09 Level 2 Part 1Michael LaCombe
 
Tachyarrhythmias
TachyarrhythmiasTachyarrhythmias
TachyarrhythmiasSmita Jain
 
Bradycardia_-_Presentation (1).pdf
Bradycardia_-_Presentation (1).pdfBradycardia_-_Presentation (1).pdf
Bradycardia_-_Presentation (1).pdfAnilSharma811261
 
Cc no adulto III
Cc no adulto IIICc no adulto III
Cc no adulto IIIgisa_legal
 
ECG Monitoring Paediatric
ECG Monitoring PaediatricECG Monitoring Paediatric
ECG Monitoring PaediatricSunilAgrawal86
 
Supra ventri cular arrhythmia 2021
Supra ventri cular arrhythmia  2021Supra ventri cular arrhythmia  2021
Supra ventri cular arrhythmia 2021rajasthan govt
 
A Student's Guide to ECG Interpretation
A Student's Guide to ECG InterpretationA Student's Guide to ECG Interpretation
A Student's Guide to ECG Interpretationmeducationdotnet
 
Atrial fibrillation
Atrial fibrillationAtrial fibrillation
Atrial fibrillationfarranajwa
 
MWEBAZA VICTOR - ECG in Emergency Medicine.pdf
MWEBAZA VICTOR - ECG in Emergency Medicine.pdfMWEBAZA VICTOR - ECG in Emergency Medicine.pdf
MWEBAZA VICTOR - ECG in Emergency Medicine.pdfDr. MWEBAZA VICTOR
 

Similar to The pediatric electrocardiogram 2 (20)

The pediatric electrocardiogram 1
The pediatric electrocardiogram 1The pediatric electrocardiogram 1
The pediatric electrocardiogram 1
 
The pediatric electrocardiogram 3
The pediatric electrocardiogram 3The pediatric electrocardiogram 3
The pediatric electrocardiogram 3
 
Simplified pediatric electrocardiogram interpretation
Simplified pediatric electrocardiogram interpretationSimplified pediatric electrocardiogram interpretation
Simplified pediatric electrocardiogram interpretation
 
Arrhythmia Recognition & Management
Arrhythmia Recognition & ManagementArrhythmia Recognition & Management
Arrhythmia Recognition & Management
 
The pediatric ecg
The pediatric ecgThe pediatric ecg
The pediatric ecg
 
Tachyarrhythmias my
Tachyarrhythmias myTachyarrhythmias my
Tachyarrhythmias my
 
Introduction to ecg
Introduction to ecgIntroduction to ecg
Introduction to ecg
 
Ecg
EcgEcg
Ecg
 
491.full.pdf
491.full.pdf491.full.pdf
491.full.pdf
 
Ekg Cases 7 15 09 Level 2 Part 1
Ekg Cases 7 15 09 Level 2 Part 1Ekg Cases 7 15 09 Level 2 Part 1
Ekg Cases 7 15 09 Level 2 Part 1
 
Tachyarrhythmias
TachyarrhythmiasTachyarrhythmias
Tachyarrhythmias
 
Pediatric dysrhythmias
Pediatric dysrhythmiasPediatric dysrhythmias
Pediatric dysrhythmias
 
Bradycardia_-_Presentation (1).pdf
Bradycardia_-_Presentation (1).pdfBradycardia_-_Presentation (1).pdf
Bradycardia_-_Presentation (1).pdf
 
Cc no adulto III
Cc no adulto IIICc no adulto III
Cc no adulto III
 
ECG Monitoring Paediatric
ECG Monitoring PaediatricECG Monitoring Paediatric
ECG Monitoring Paediatric
 
Supra ventri cular arrhythmia 2021
Supra ventri cular arrhythmia  2021Supra ventri cular arrhythmia  2021
Supra ventri cular arrhythmia 2021
 
A Student's Guide to ECG Interpretation
A Student's Guide to ECG InterpretationA Student's Guide to ECG Interpretation
A Student's Guide to ECG Interpretation
 
ECG in young
ECG in youngECG in young
ECG in young
 
Atrial fibrillation
Atrial fibrillationAtrial fibrillation
Atrial fibrillation
 
MWEBAZA VICTOR - ECG in Emergency Medicine.pdf
MWEBAZA VICTOR - ECG in Emergency Medicine.pdfMWEBAZA VICTOR - ECG in Emergency Medicine.pdf
MWEBAZA VICTOR - ECG in Emergency Medicine.pdf
 

Recently uploaded

Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxNiranjan Chavan
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
Call Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service NoidaCall Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service NoidaPooja Gupta
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...narwatsonia7
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...
Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...
Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...Ahmedabad Escorts
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Timevijaych2041
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...narwatsonia7
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknownarwatsonia7
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformKweku Zurek
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxDr.Nusrat Tariq
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsMedicoseAcademics
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr
9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr
9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi NcrDelhi Call Girls
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowNehru place Escorts
 

Recently uploaded (20)

Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptx
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
Call Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service NoidaCall Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service Noida
 
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...
Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...
Air-Hostess Call Girls Madambakkam - Phone No 7001305949 For Ultimate Sexual ...
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy Platform
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptx
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes Functions
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr
9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr
9873777170 Full Enjoy @24/7 Call Girls In North Avenue Delhi Ncr
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 

The pediatric electrocardiogram 2

  • 1. Diagnostics The pediatric electrocardiogram Part II: Dysrhythmias Matthew O'Connor MDa , Nancy McDaniel MDb , William J. Brady MDc,⁎ a Department of Pediatrics, Children's Medical Center, University of Virginia Health System, Charlottesville, VA 22908, USA b Division of Cardiology, Department of Pediatrics, Children's Medical Center, University of Virginia Health System, Charlottesville, VA 22908, USA c Department of Emergency Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA Received 27 July 2007; accepted 31 July 2007 Abstract The following article in this series will describe common arrhythmias seen in the pediatric population. Their definitions and clinical presentations along with electrocardiogram (ECG) examples will be presented. In addition, ECG changes seen in acute toxic ingestions commonly seen in children will be described, even if such ingestions do not produce arrhythmias per se. Disturbances of rhythm seen frequently in patients with unrepaired and corrected congenital heart disease will be more fully discussed in the third article of this series. Numerous classification schemes for arrhythmias exist; in this article arrhythmias will be grouped based upon their major ECG manifestations. © 2008 Elsevier Inc. All rights reserved. 1. Introduction The following article in this series will describe common arrhythmias seen in the pediatric population. Their defini- tions and clinical presentations along with ECG examples will be presented. In addition, ECG changes seen in acute toxic ingestions commonly seen in children will be described, even if such ingestions do not produce arrhyth- mias per se. Disturbances of rhythm seen frequently in patients with unrepaired and corrected congenital heart disease will be more fully discussed in the third article of this series. Numerous classification schemes for arrhythmias exist; in this article arrhythmias will be grouped based upon their major ECG manifestations. 2. Bradyarrhythmias Bradyarrhythmias are uncommon causes of ECG abnormalities in children without congenital heart disease; they are seen frequently in patients with congenital heart disease who have undergone surgical manipulation of the atria (eg, Fontan procedure, atrial septal defect repair, atrioventricular [AV] canal repair, and older “atrial switch” operations for transposition of the great arteries). Sinus bradycardia is defined by the presence of a sinus rhythm that is abnormal only in that it is slower than expected for the child's age (Fig. 1). Specific age-related norms were described in the previous article, but in general a heart rate less than 100 beats per minute (bpm) in children younger than 3 years old, less than 60 bpm in children 3 to 9 years old, less than 50 bpm in children 9 to 16 years old, and less than 40 in older children and adolescents should entertain the diagnosis of sinus bradycardia [1]. As in adults, several factors must be considered before making this ⁎ Corresponding author. E-mail address: wb4z@virginia.edu (W.J. Brady). www.elsevier.com/locate/ajem 0735-6757/$ – see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.ajem.2007.07.034 American Journal of Emergency Medicine (2008) 26, 348–358
  • 2. diagnosis, particularly with regard to sleeping vs the waking state and level of athletic training. Sinus arrest (also known as sinus pause) reflects the failure of the sinoatrial node to propagate impulses. If the period of arrest is prolonged, escape rhythms may “take over” the function of the sinoatrial, and these escape rhythms may occur at the AV nodal, bundle of His, or ventricular level. In children, the mean maximum duration of sinus pause (F2 SD) was found to be 1.82 seconds [2]. 3. Atrioventricular block The generic term AV block implies a disturbance of impulse conduction from the atria to the ventricles. The anatomic locations of such disturbances vary depending on the underlying mechanism of the arrhythmia. Generally, AV block is categorized into first-degree (1°), second-degree (2°), and third-degree (3°) subtypes. First-degree block (Fig. 2) is identified electrocardiographically by a prolonged Fig. 1 Sinus bradycardia in a child with hypothyroidism. The heart rate varies between 30 and 40 bpm. Fig. 2 First-degree AV block in a young boy undergoing Holter monitoring. Note the markedly prolonged PR interval. 349The pediatric ECG
  • 3. PR interval for age. The reader is referred to age-related pediatric norms as discussed in Part I and other age-related norms discussed in this article [3]. First-degree block is typically asymptomatic and generally does not imply underlying disease of the conduction system. It may be seen in the sleeping state [4], in trained athletes with low resting heart rates [5], and rarely in Lyme disease and myocarditis [6]. Second-degree AV block is divided into 2 categories: type I (Wenkebach), in which there is progressive prolongation of the PR interval until failure of AV conduction occurs (Fig. 3A), and type II (Möbitz), in which random “dropping” or failure of AV conduction occurs without PR prolongation (Fig. 3B). Of the two, type II block is more ominous and may progress to complete (3°) heart block. Type I 2° block is again a common variant of normal, particularly in trained athletes [5]. It is also common after repair of structural congenital heart disease [7]. The presence of Möbitz block or any symptomatic 2° block warrants pediatric cardiology consultation with consideration given to pacing. Complete or 3° heart block is defined by the absence of conduction between the atria and ventricles. Complete heart Fig. 3 A, Type I second-degree AV block from a Holter recording in a 7-year-old boy with congenital complete heart block. B, Type II second-degree AV block with wide QRS complex. Fig. 4 Third-degree AV block seen in the same patient as in Fig. 3A. Note that there is no relationship between P waves and QRS complexes. 350 M. O’Connor et al.
  • 4. block is manifested by AV dissociation in which regularly spaced P waves are not related temporally to the ventricular escape rhythm (Fig. 4). The QRS duration may be normal or prolonged depending on the location of the block; more proximal blocks (ie, near the AV node) will typically result in a normal QRS duration. Congenital complete heart block occurs in infants of mothers carrying anti-Ro and anti-La antibodies; mothers may or may not have clinical symptoms of lupus [8]. Complete heart block is also a known complication of surgery for congenital heart disease and has a significant effect on morbidity and mortality [9]. Complete heart block is almost always symptomatic and usually requires dual-chamber pacemaker implantation. The bundle branches are the downstream limbs of the bundle of His and allow for nearly synchronous depolariza- tion of the left and right ventricles, which is important in maintaining cardiac synchrony. Prolongation of conduction through the bundle branches results in QRS prolongation and is known as bundle branch block (BBB). Bundle branch block can affect the right or left bundle branches (RBBB, LBBB) and be classified as complete or incomplete, based upon whether there is QRS prolongation for age. Incomplete RBBB is commonly seen in pediatric ECGs and is manifested by an rSR′ pattern in lead V1 and a small S wave in lead V6; the initial upstroke of the QRS is normal with a delay in the terminal portion of the QRS complex (Fig. 5). Right bundle branch block is detected in V1; the Fig. 5 Incomplete RBBB in a 3-week-old male infant after tetralogy of Fallot repair. Note the rSR′ pattern in leads V1 and V2 with minimal QRS prolongation. Fig. 6 Complete RBBB in a 19-year-old adolescent girl with repaired tetralogy of Fallot. Note the similarity of the rSR′ pattern to the previous figure, with this ECG manifesting QRS prolongation. Fig. 7 Left bundle branch block. Note the prolonged QRS duration in the lateral precordial lead V5. 351The pediatric ECG
  • 5. initial upstroke of the QRS is delayed (Fig. 6) with the terminal portion of normal duration, whereas LBBB is typically manifested by QRS prolongation in V6 (Fig. 7). Bundle branch blocks may be seen in a variety of conditions and is a frequent finding after surgery for congenital heart disease, particularly in which there has been a ventriculot- omy (ie, tetralogy of Fallot) [10]. 4. Normal QRS duration tachycardias Numerous schemes exist for classifying tachycardias; a useful and simple way is to categorize them based upon the QRS duration. In general, tachycardias with a normal QRS duration for age can be considered as originating superior to the AV node, whereas tachycardias associated with QRS prolongation typically originate at locations inferior to the AV node. This scheme is not perfect but allows for ease of organization. Sinus tachycardia is usually simple to recognize on the ECG (Fig. 8). For the diagnosis of sinus tachycardia to be established, a P wave must precede every QRS complex and the P waves must have a normal axis (discussed previously). In adults, a heart rate greater than 100 bpm is considered tachycardia. In children, this rate is age dependent but general guidelines exist; heart rates greater than 160 bpm in infants and greater than 140 bpm in children suggest sinus tachycardia [11]. Sinus tachycardia often reflects anxiety, dehydration, or fever, and can be considered an “appropriate” physiologic response to the underlying disturbance. “Inap- propriate” sinus tachycardia implies underlying primary cardiac disturbance and is often seen in myocarditis or congestive heart failure. Although a wide range of heart rates may be seen in sinus tachycardia, the sinus node rarely paces at heart rates greater than 220 bpm; when greater heart rates are seen, sinus tachycardia is uncommon. Ectopic atrial tachycardias can be difficult to distinguish from so-called supraventricular tachycardias (SVTs; see below), particu- larly at high rates in which the P wave is “buried” within the T wave of the preceding QRS complex (Fig. 9). Atrial flutter and atrial fibrillation are quite rare in pediatric patients. However, a form of atrial flutter can be seen after surgery for congenital heart disease, particularly in patients with Fontan-type operations and atrial switch procedures for transposition of the great arteries [12]. Atrial flutter is identified by so-called sawtooth waves representing the rapid atrial rate with typically normal QRS duration. Atrial fibrillation demonstrates chaotic irregular atrial activity with an “irregularly irregular” ventricular rate; QRS is usually normal in duration (Fig. 10). Supraventricular tachycardia is one of the most common arrhythmias encountered in pediatric patients (Fig. 11). The term supraventricular tachycardia is confusing and does not imply a single mechanism, however. Supraventricular tachycardia includes any arrhythmia that requires atrial or AV nodal tissue for their initiation and propagation, and includes atrial tachycardias, atrial fibrillation, atrial flutter, nodal tachycardia, junctional ectopic tachycardia, and others [13] For the purposes of this discussion, SVT will be defined as a paroxysmal tachyarrhythmia manifested by the absence of P waves and by the presence of normal QRS complexes. In children, there are 2 common mechanisms of SVT [14]. Both involve reentry mechanisms. In AV nodal reentry tachycardia the reentry mechanism involves the AV node, and in AV reentry tachycardia reentry proceeds via an accessory pathway near, but not including, the AV node. Two mechanisms are often indistinguishable via ECG. Preexcita- tion syndromes are more common in children with AV reentry tachycardia and are discussed below. The treatment of SVT involves vagal maneuvers, adenosine, and in rare cases synchronized cardioversion and is discussed in further detail elsewhere [15]. Two additional SVTs occasionally encountered in pedia- trics include junctional ectopic tachycardia and permanent junctional reciprocating tachycardia (Fig. 12). Junctional ectopic tachycardia is a common and frequently hemodyna- mically deleterious rhythm seen in postoperative patients and is discussed in a subsequent article. Permanent junctional reciprocating tachycardia is a chronic, incessant form of tachycardia involving an accessory pathway that presents in infants and is electrocardiographically manifested by a Fig. 8 Sinus tachycardia detected on Holter monitoring of a 6-year-old girl with near syncope. The heart rate is regular at 157 bpm. 352 M. O’Connor et al.
  • 6. prolonged R-P interval [16]. It frequently causes a cardio- myopathy which responds to rate control, although achieve- ment of normal sinus rhythm can be extremely difficult. 5. Abnormal QRS duration tachycardias Tachycardias demonstrating prolonged QRS duration for age imply a ventricular origin to the arrhythmia. Ventricular arrhythmias also demonstrate “bizarre” QRS morphologies. Ventricular arrhythmias are uncommon in children and usually arise in the setting of severe electrolyte disarray, ingestion, or rare inherited disorders of cardiac conduction. Ventricular arrhythmias, however, are poorly tolerated hemodynamically so prompt recognition and initiation of therapy are vital. Premature ventricular contractions (PVCs) are a frequent finding in children and may be cause for concern in rare cases (Fig. 13). They are manifested on the ECG by bizarrely shaped, wide QRS complexes with the associated T wave usually pointing in the opposite direction of the QRS complex. A compensatory pause after the PVC will be seen. Premature ventricular contractions of uniform morphology are less concerning than those of multiple forms. Ventricular tachycardia consists of 3 or more successive PVCs at a regular rate of 120 to 180 bpm (Fig. 14). As in adults, it can degenerate into ventricular fibrillation, a usually lethal rhythm unless promptly treated. Several special conditions associated with ventricular tachycardia in children should be Fig. 10 Atrial flutter in a neonate without structural congenital heart disease. Note the rapid ventricular rate and distinctive flutter waves seen best in leads aVR and aVF. Fig. 9 Ectopic atrial tachycardia captured on Holter monitoring of a young girl. Note how the P waves are difficult to separate from the QRS complex owing to the high heart rate. 353The pediatric ECG
  • 7. mentioned. The Brugada syndrome is a rare, autosomal dominant, and frequently lethal disorder associated with bouts of ventricular tachycardia and sudden death. A peculiar “saddle-form” ST-segment elevation in the right precordial leads with a family history suggests the diagnosis [17]. Arrhythmogenic right ventricular dysplasia is another rare inherited disorder causing ventricular tachycardia and sudden death in affected individuals due to the replacement Fig. 12 Narrow complex tachycardia in an 8-month-old infant presenting with feeding difficulties, poor weight gain, and cardiomyopathy. Electrophysiologic study revealed the diagnosis of permanent junctional reciprocating tachycardia. Fig. 11 Supraventricular tachycardia in a 10-year-old boy with palpitations and a rapid heart rate. Note the regular rate, narrow QRS complex, and absence of P waves. The tachycardia resolved with intravenous adenosine. Final diagnosis was orthodromic reciprocating tachycardia due to an accessory pathway. 354 M. O’Connor et al.
  • 8. of right ventricular myocardium with fatty and fibrous tissue. Patients with this disorder typically present after puberty with ventricular tachycardia, and the interval ECG is notable for a persistent juvenile pattern of T-wave inversion and a widened QRS complex in right precordial leads. 6. Ventricular preexcitation syndromes The term preexcitation refers to ventricular depolarization that is earlier than expected. Preexcitation can occur via either a reentry pathway or an accessory pathway [18]. In either case, the potential for sustained and dangerous tachycardia exists because the AV node no longer “protects” the ventricles from excessively high atrial rates. The electrocardiographic appearance of preexcitation (Fig. 15) consists of (a) normal P-wave morphology and axis, (b) shortened PR interval, (c) prolonged QRS complex with initial “slurring” (delta wave), and (d) Q waves and T-wave abnormalities in what is termed a pseudoinfarction pattern. The most common syndrome associated with preexcitation in children and adults is the Wolff-Parkinson-White (WPW) syndrome. In patients with WPW, the most commonly encountered arrhythmia is a paroxysmal reentry SVT. Detection of the “WPW pattern” (ie, delta wave with a Fig. 14 Unprovoked ventricular tachycardia from Holter monitoring in a 13-year-old adolescent girl with syncope. Fig. 13 Multiple PVCs in a 17-year-old adolescent boy with a history of transposition of the great vessels after arterial switch procedure. Note the bizarre, wide QRS complexes interspersed with QRS complexes of normal configuration. 355The pediatric ECG
  • 9. prolonged QRS complex) in an asymptomatic child warrants cardiology referral, although the actual risk of sudden death in this population is likely quite low [19]. 7. Tachycardias associated with a prolonged QT interval Evaluation of the QT interval is an essential aspect of ECG interpretation. Norms for the corrected QT interval have been published and were discussed in the previous article of this series. Prolongation of the QT interval is often asymptomatic but puts the patient at risk of ventricular arrhythmias, the most common of which is torsades de pointes. Torsades de pointes is a form of polymorphic ventricular tachycardia that has the ECG appearance of “twisting along a string.” Prolongation of the QT interval can be due to a multitude of factors, congenital and acquired. QT prolongation is associated with hypokalemia and hypocalcemia; it is also seen with administration of antiarrhythmic agents. Many medications are associated Fig. 16 Prolonged QT interval in an 18-year-old adolescent girl with familial long QT syndrome and a history of cardiac arrest. The QT interval calculated by Bazett's formula is 506 milliseconds. Fig. 15 Delta waves seen in a child with WPW syndrome who presented with SVT; preexcitation did not manifest until the tachycardia resolved. 356 M. O’Connor et al.
  • 10. with QT prolongation as well, particularly antibiotics and older antipsychotics. Congenital forms of the long QT syndrome warrant discussion in pediatric patients. Congenital long QT syndrome is a cause of pediatric sudden death and has been associated with sudden death during sleep, exercise, and perhaps a small subset of infants dying of sudden infant death syndrome [20]. The 2 most common inherited long QT syndromes are known eponymously as the Romano-Ward and Jervell/Lange-Nielsen syndromes and are caused by known mutations in cardiac ion channels. Congenital long QT syndrome is a common cause of sudden death attributable to cardiac causes in children; in an international registry of long QT patients, 8% died suddenly during 5 years of follow-up [21]. Certainly, identification of a prolonged QT interval in a pediatric patient warrants pediatric cardiology referral and close follow-up (Fig. 16). 8. Toxicology Children frequently present to EDs after ingestion of medications or other toxins, unintentionally or otherwise. Obtaining an ECG is an important aspect of evaluating these patients. A number of agents cause QRS prolongation, mainly via blockade of the sodium channels responsible for depolarization during phase 0 of the myocardial action potential. Examples of such agents include tricyclic antidepressants, diphenhydramine, propanolol, hydroxy- chloroquine, and many antiarrhythmic agents [22]. QRS prolongation in the setting of sodium channel blockade, when severe, may lead to asystole unless therapy with saline or sodium bicarbonate is administered. Tricyclic antidepressant ingestion warrants special attention owing to the multitude of effects on the ECG [23]. The ECG presentation of such toxicity is dependent on the specific medication ingested as well as the ingested dose. Tricyclic antidepressants have 4 important effects: (1) inhibition of presynaptic neurotransmitter reuptake; (2) α-adrenergic receptor blockade; (3) anticholinergic effects; and (4) sodium channel blockade. Collectively, these can lead to tachycardia, QRS prolongation, and QT prolonga- tion (Fig. 17). β-Blockers and calcium-channel blockers are commonly used medications in adults that not infrequently are unintentionally ingested by children. β-Blockers are phar- macologically heterogeneous with each agent exerting single or multiple effects at β1, β2, and α1 receptors. Some β-blockers contain sodium-channel blocking ability and may prolong the QRS interval. Sotalol, a class III antiarrhythmic agent, contains potassium channel blocking ability and can cause QT interval prolongation [24]. β1 Receptors, however, located in the myocardium, are largely responsible for the cardiovascular sequelae of β-blocker overdose. Electrocar- diogram manifestations of ingestion generally include bradycardia, various grades of AV block, and QRS complex widening. [25]. Calcium channel blockers cause predictable but non- specific changes in the ECG. Common changes include hypotension, bradycardia, and AV blocks [26]. Because many current formulations of calcium channel blockers are of the extended-release variety, symptoms may be delayed for up to several hours postingestion [27]. Another consideration in evaluating calcium channel overdose is the cardioselectivity of the agent. Older agents such as nifedipine may exert a predominantly vascular effect at lower doses, resulting in hypotension with reflex bradycardia. Newer Fig. 17 Sinus tachycardia with widened QRS complex, deep S wave in lead I, and prominent R wave in lead aVr. This ECG was recorded in a lethargic adolescent with tricyclic antidepressant ingestion. 357The pediatric ECG
  • 11. agents such as verapamil or diltiazem may result in bradycardia and conduction disturbances without hypoten- sion. At sufficient doses, however, selectivity is lost. In summary, arrhythmias in otherwise healthy children are relatively uncommon in the pediatric population but prompt recognition will prevent excess morbidity and mortality. The incidence of arrhythmias in patients with a history of congenital heart disease is markedly higher and the ECG manifestations of such arrhythmias in this patient population will be described in the next article of this series. References [1] Martin AB, Kugler JD. Sinus node dysfunction. In: Gillette PC, Garson Jr A, editors. Clinical pediatric arrhythmias. Philadelphia: W.B. Saunders; 1999. p. 51-62. [2] Southall DP, Richards J, Mitchell P, et al. Study of cardiac rhythm in healthy newborn infants. Br Heart J 1980;43:14-20. [3] Davignon A, Rautaharju P, Boiseelle E, et al. Normal ECG standards for infants and children. Pediatr Cardiol 1979;1:123-52. [4] Nagashima M, Matsushima M, Ogawa A, et al. Cardiac arrhythmias in healthy children revealed by 24-hour ambulatory ECG monitoring. Pediatr Cardiol 1987;8:103-8. [5] Viitasalo MT, Kala R, Eisalo A. Ambulatory electrocardiographic findings in young athletes between 14 and 16 years of age. Eur Heart J 1984;5:2-6. [6] Chan TC, Brady WJ, Pollack M. Electrocardiographic manifestations: acute myopericarditis. J Emerg Med 1999;17:865-72. [7] Ross BA, Gillette PC. Atrioventricular block and bundle branch block. In: Gillette PC, Garson Jr A, editors. Clinical pediatric arrhythmias. Philadelphia: W.B. Saunders; 1999. p. 63-77. [8] Brucato A, Franceschini F, Gasparini M, et al. Isolated congenital complete heart block: longterm outcome of mothers, maternal antibody specificity and immunogenetic background. J Rheumatol 1995;22: 533-40. [9] Weindling SN, Saul JP, Gamble WJ, et al. Duration of complete atrioventricular block after congenital heart disease surgery. Am J Cardiol 1998;82:525-7. [10] Gelband H, Walso AL, Kaiser GA, et al. Etiology of right bundle- branch block in patients undergoing total correction of tetralogy of Fallot. Circulation 1971;44:1022-33. [11] Park MK, Gunteroth WG. How to read pediatric ECGs. St. Louis: Mosby; 1992. p. 110-30. [12] Ghai A, Harris L, Harrison DA, et al. Outcomes of late atrial tachyarrhythmias in adults after the Fontan operation. J Am Coll Cardiol 2001;37:585-92. [13] Fish FA, Benson Jr DW. Disorders of cardiac rhythm and conduction. In: Allen HD, Gutgesell HP, Clark EB, et al, editors. Heart disease in infants, children, and adolescents, including the fetus and young adult. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 482-533. [14] Van Hare GF. Supraventricular tachycardia. In: Gillette PC, Garson Jr A, editors. Clinical pediatric arrhythmias. Philadelphia: W.B. Saun- ders; 1999. p. 97-120. [15] Chun TU, Van Hare GF. Advances in the approach to treatment of supraventricular tachycardia in the pediatric population. Curr Cardiol Rep 2004;6:322-6. [16] Vaksmann G, D'Hoinne C, Lucet V, et al. Permanent junctional reciprocating tachycardia in children: a multicentre study on clinical profile and outcome. Heart 2006;92:101-4. [17] Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 2005;111:659-70. [18] Lindbergh JR, Brady WJ. Preexcitation syndromes. In: Chan TC, Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 112-7. [19] Sarubbi B, Scognamiglio G, Limongelli G, et al. Asymptomatic ventricular pre-excitation in children and adolescents: a 15 year follow up study. Heart 2003;89:215-7. [20] Schwartz PJ, Stramba-Badiale M, Segantini A, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med 1998;338:1709-14. [21] Garson Jr A, Dick M, Fournier A, et al. The long QT syndrome in children: an international study of 287 patients. Circulation 1993;87: 1866-72. [22] Holstege CP, Baer AB. Other preexcitation syndromes. In: Chan TC, Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 274-8. [23] Harrigan RA, Brady WJ. ECG abnormalities in tricyclic antidepressant ingestion. Am J Emerg Med 1999;17:387-93. [24] Link MS, Foote CB, Sloan SB, et al. Torsade de pointes and prolonged QT interval from surreptitious use of sotalol: use of drug levels in diagnosis. Chest 1997;112:556-7. [25] Barry JD, Williams SR. Beta-adrenergic blocking agents. In: Chan TC, Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 260-2. [26] Offerman SR, Ly BT. Calcium channel antagonists. In: Chan TC, Brady WJ, Harrigan RA, et al, editors. ECG in emergency medicine and acute care. Philadelphia: Elsevier/Mosby; 2005. p. 263-5. [27] Belson MG, Gorman SE, Sullivan K, et al. Calcium channel blocker ingestions in children. Am J Emerg Med 2000;18:581-6. 358 M. O’Connor et al.