Your SlideShare is downloading. ×
0
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Sissa at Oecd workshop on
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Sissa at Oecd workshop on

519

Published on

How Public Administrations can contribute to a sustainable ICT

How Public Administrations can contribute to a sustainable ICT

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
519
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. How Public Administration can  How Public Administration can contribute to a sustainable ICT Giovanna Sissa Giovanna Sissa Technological Observatory for schools h l l b f h l (OTE ‐ Osservatorio Tecnologico) Italian Ministry of Education Workshop on ICT and environmental challenges  Copenhagen 22‐23 May 2008
  • 2. e-work e-government g e-health e elearning e-elearning e commerce e-commerce ICT e-democracy e-business e-inclusion e-procurement
  • 3. e-work e-government e-health e-elearning g e-commerce ICT e-democracy e-business e-inclusion e-procurement e-waste t
  • 4. PCs environmental footprint PCs environmental footprint • Hi h t h High tech complexity implies that the production of PCs  l it i li th t th d ti f PC and their components is energy and material intensive • Energy used to operate computers is also relevant • The disposal (storage, landfill and recycling) of end‐of‐life‐ equipment plays an important role in the direct  environmental impact environmental impact • The hazardous chemicals in e‐waste mean that electronics  can harm workers in the recycling yards, as well as their  neighbouring communities and the environment 
  • 5. Stakeholders worried about the  environmetal issues of ICT The Australian Computer Society delivered Australia’s first ICT carbon  emissions audit, revealing that ICT used by Australian businesses  generated 7.94 million tons(Mt) of carbon dioxide in 2005, which is the  generated 7 94 million tons(Mt) of carbon dioxide in 2005 which is the close equivalent to the civil aviation and the metal production Industries ICT usage by Australian businesses represents 2.84% of the emissions  g y p f attributed to the stationary energy component (energy consumed  excluding transportation), and 1.52% of the total national emissions,  which totals  522.2 Mt CO2.   ICT’s carbon emissions are comparable i i ’ b i i bl in size to other industries such as : h i d i h • civil aviation  ‐ which is estimated to generate 0.97% of total carbon  emissions  • metal production (mostly iron and steel) ‐ which accounts for around  l d i ( l i d l) hi h f d 2.3% of total carbon emissions  • the cement industry ‐ at around 1%.
  • 6. THE E‐WASTE PROBLEM THE E WASTE PROBLEM The amount of electronic The amo nt of electronic products discarded globally  has skyrocketed recently,  with 20‐50 million tons  with 20‐50 million tons generated every year.  If such a huge figure is  If h h fi i hard to imagine, think of it  like this ‐ if the estimated  amount of e‐waste  amount of e waste generated every year  would be put into  containers on a train it  containers on a train it would go once around the  world!
  • 7. The e‐waste problem some figures The e waste problem – some figures • Continued, rapid technological progress in the IT industry has  contributed to short lifespans that are well below the  functional limits of computers. A short lifespan exacerbates  functional limits of computers. A short lifespan exacerbates environmental  impact, requiring production of more new  machines and increasing the numbers heading for landfills or  recycling centers  recycling centers • E‐waste is now the fastest growing component of the  municipal solid waste stream:  mobile phones and computers  i i l lid bil h d are causing the biggest problem because they are replaced  most often • In Europe e‐waste is increasing at 3%‐5% a year, almost three  times faster than the total waste stream times faster than the total waste stream
  • 8. • Developing countries are also expected to triple their e‐waste  production over the next five years • The average lifespan of computers in developed countries has  dropped from six years in 1997 to just two years in 2005 • 183 million computers were sold worldwide in 2004 ‐11.6 %  more than in 2003 more than in 2003 • By 2010, there will be 716 million new computers in use.  There will be 178 million new computer users in China, 80  million new users in India
  • 9. Reduce, Reuse, Recycle Reduce Reuse Recycle • Reduce • The term reuse means the equipment is still The term reuse means the equipment is still  working and the “life” of the product  can  continue  continue • The term recycling means the equipment is  disassembled and the components ‐ such as  plastic, glass and metals  are recovered and  plastic, glass and metals ‐ are recovered and used to manufacture new products (raw  materials)
  • 10. Computer recycling issues Computer recycling issues • Th The environmental burden associated with producing  a  i t lb d i t d ith d i PC comes from the  making of the  high‐tech parts • The internal structure of a PC is complex, making  p p proper recycling  time consuming and expensive y g g p • The environmental payback from material recycling is  comparatively less than that of appliances, like  refrigerators • PC proper recycling is low profitable 
  • 11. Reuse vs recycle Reuse vs recycle • M Many of the machines are either still usable creating a  f th hi ith till bl ti real challenge for end‐of‐life processing • When a computer no longer satisfies the needs of its  user, she or he can sell or donate it to another user  who has lower demands on performance • While collection systems and recycling technologies are  clearly needed, the common wisdom of waste  management is that, reducing and reusing are often  management is that reducing and reusing are often very effective and economical approaches compared  to recycling
  • 12. Extending the lifespan of a computer through  reuse can be  a useful strategy  • The effects of RoHS (Reduction of Hazardous Substances)  EU Directive will be seen in the future EU Directive will be seen in the future • First generation of Green computers First generation of Green computers • M t PC i Most  PCs  in use are not green at all! t t ll! • T h l Technology for recycling  is improving ‐ B t A il bl f li i i i Best Available  Technologies
  • 13. Reuse in the private sector Reuse in the private sector
  • 14. Reuse in the public sector Reuse in the public sector
  • 15. Reuse in the Public Sector Reuse in the Public Sector The mantra of  Reduce, Reuse, Recycle The mantra of quot;Reduce Reuse Recycle“  (3Rs)  here becomes  h b quot;Reduce, Reuse, Recycle, Rethink“ (4Rs)
  • 16. Reuse of Obsolete PCs – an example of Obsolete PCs Thin client computers The potential E‐WASTE stock  The potential E WASTE stock Osservatorio Tecnologico  Osservatorio Tecnologico Genoa Novembre 2006 laboratories ‐ Genoa, march 2007
  • 17. Another example Another example • A ti A national agreement between the Ministries of  l tb t th Mi i t i f Transport and Education gave Italian schools a  few thousand old PCs, managed  on a regional  few thousand old PCs managed on a regional basis • GROSS (Genoa Reuse with Open Source at  School): a pilot project to create a general  School): a pilot project to create a general framework for reuse  computers at school • Genoa PCs stock:   ~200 Pcs
  • 18. GROSS ‐ GROSS project • A t h i l ft A technical software solution suitable for the  l ti it bl f th schools:   old PCs  are used as Thin clients old PCs are used as Thin clients • A G id li f d A Guideline for donation to schools with  i h l ih procedural and practical suggestions  for donors  and criteria to  evaluate the feasibility and  and criteria to evaluate the feasibility and sustainability of a donation program Example of criteria:  a large number of obsolete but  g y p homogeneous PCs allows  easy replication
  • 19. Strengths • No client administration/management • Only  terminal server administration/management l l d / • Zero software licence costs • Scalability • Full reuse of potential e‐waste  Weaknesses k • Know how: professional skills for feasibility study,  cost/benefit analysis and prototyping cost/benefit analysis and prototyping • Man/Months of work • Data clean‐up p • (Physical) storage  • Transportation of old equipment
  • 20. Responsibility across the whole life cycle of  computers DESIGN SG MANUFACTURE C •Increase power efficiency  •Cleaner manufacturing processes I h dli •Improve power handling A l CSR t li •Apply CSR to suppliers  •Design for the environment •Reduce use of hazardous substances  •Minimize transport & packaging impact OPERATION DISPOSAL •Manage IT energy usage in the data  •Reuse and refurbish systems centers and beyond •Recycle systems at end‐of‐life •Implementing green source criteria •Implementing green source criteria •Recycle consumable •Recycle consumable •Thin computing •Server Virtualization
  • 21. Buy, Use and Dispose What  at “responsibility for the whole life  cycle of computers”   l f t ” means for PAs
  • 22. Buy Green Public Procurement  • Green architecture : server virtualisation GRID Green architecture : server virtualisation, GRID… • Thin computing • Ecodesign ‐ takes into consideration the whole  life cycle:  life cycle: • Elimination of  hazardous substances  gy p • Reduction of energy consumption • Aid to the dismantling processes by  identifying (RFID)  the  hazardous components or those suitable to be recycled
  • 23. Use – key recommendations  Use – key recommendations Back Office Green Desktop Green Office •Data center audits p •Paperless office •Green energygy •Energy monitoring •Power management •Intelligent building •Server Virtualization (disable screen savers and  •Home working policy •Power and cooling implements sleep mode  for period of inactivity) •Thin client computing  (desktop virtualisation  •Video conferencing 
  • 24. Disposal   Disposal •If new computers are  acquired, Public  Administrations  should  take into account the option of  donating  it  for   should take into account the option of donating it for reuse when they will need to be upgraded or changed  •The Public administration have to simplify the  donation procedures p •The procedures have to take into consideration the •The  procedures have to take into consideration the  data cleanup
  • 25. •It can be useful to have work teams composed by  donors and receiving subjects (i.e. schools) •It’s important to donate end‐of‐life computers  It s important to donate end of life computers immediately instead of  keeping  them in storage for  months or years o s y
  • 26. Sharpen the definition of reuse Sharpen the definition of reuse
  • 27. E‐waste art Thanks for your attention!

×