Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Endocrine system by Geraldine D. Reyes 1388 views
- Teaching the psychomotor phase of p... by Geraldine D. Reyes 1046 views
- Rules and regulations by Geraldine D. Reyes 3572 views
- Manobo musical instruments by Geraldine D. Reyes 8808 views
- Psychology of music by Geraldine D. Reyes 2463 views
- Revised basic education curriculum ... by Geraldine D. Reyes 73549 views

No Downloads

Total views

476

On SlideShare

0

From Embeds

0

Number of Embeds

4

Shares

0

Downloads

7

Comments

0

Likes

1

No embeds

No notes for slide

- 1. MATRIXALGEBRA
- 2. A systematic approach of theelimination method for solving asystem of linear equations providesanother method of solution thatinvolves a simplified notation. 3 ways in finding determinants: Criss-cross multiplication Row Column
- 3. DETERMINING THE ERROR OF 3X3 MATRIX
- 4. The Given Matrix: 3 1 1 A= 2 -4 -3 7 -2 0
- 5. 3 1 1 3 1 2 -4 -3 2 -4 7 -2 0 7 -2 (0 -21 -4) - (-28 +18+0 ) = -15Criss-cross multiplication
- 6. Cofactor: 3= -4 -3 -2 0 = -6 1= 2 -3 7 0 = 21 1= 2 -4 7 -2 = 24
- 7. Cofactor: 2= 1 1 -2 0 =2 -4= 3 1 7 0 = -7 -3= 3 1 7 -2 = -13
- 8. Cofactor: 7= 1 1 -4 -3 =1 -2= 3 1 2 -3 = -11 0= 3 1 2 -4 = -14
- 9. Inverse Matrix:A-1 = -1/15 -6 2 1 + - + 21 -7 -11 - + - 24 -13 -14 + - + 6/15 2/15 -1/15 A-1 = 21/15 7/15 -11/15 -24/15 -13/15 14/15
- 10. Identity Matrix 3 1 1 6/15 2/15 -1/15AA-1= 2 -4 -3 21/15 7/15 -11/15 7 -2 0 -24/15 -13/15 14/15 1 0 0 = 0 1 0 0 0 1
- 11. Remember:• The first thing we should do is to identify the correct determinant and finding the inverse and identity of the matrix given was done in order to prove whether the determinant used wasn’t wrong.
- 12. ERRORSCriss-Cross Multiplication Row Determinant Column Determinant
- 13. Criss-Cross 3 1 1 3 1 2 -4 -3 2 4 7 -2 0 7 -2 = -21 - 4 + 28 – 18 = -15
- 14. Criss-Cross 7 -2 0 7 -2 3 1 1 3 1 2 -4 -3 2 -4 = -21 - 4 + 28 – 18 = -15
- 15. Criss-Cross 7 -2 0 7 -2 2 -4 -3 2 -4 3 1 1 3 1 = -28 + 18 + 21 + 4 = 15 ERROR
- 16. Criss-Cross 3 1 1 3 1 7 -2 0 7 -2 2 -4 -3 2 -4 = 18 - 28 + 4 + 21 = 15 ERROR
- 17. Criss-Cross 2 -4 -3 2 -4 3 1 1 3 1 7 -2 0 7 -2 = -28 +18 + 21 – 4 = 15 ERROR
- 18. Criss-Cross 2 -4 -3 2 4 7 -2 0 7 -2 3 1 1 3 1 = -4 - 21 - 18 + 28 = -15
- 19. Column 3 1 1 2 -4 -3 7 -2 0 = 1(24) + 3(-13) + 0 = -15 = 1(21) + 4(-7) - 2(-11) = 15 ERROR = 3(-6) – 2(2) + 7(1) = -15
- 20. Column 3 1 1 7 -2 0 2 -4 -3 = 1(-24) – 0 – 3(-13) = 15 ERROR = 1(-21) + 2(-11) - 4(-7) = -15 = 3(6) – 7(1) + 2(2) = 15 ERROR
- 21. ROW3 1 12 -4 -37 -2 0 = 7(1) + 2(-11) + 0(-14) = -15 = 2(2) + 4(-7) - 3(-13) = 15 ERROR = 3(-6) – 1(21) + 1(24) = -15
- 22. ROW3 1 17 -2 02 -4 -3 = 2(2) + 4(-7) – 3(-13) = 15 ERROR = 7(1) + 2(-11) - O(-14) = -15 = 3(6) – 1(-21) + 1(-24) = 15 ERROR
- 23. Tip in finding the error:If the determinant you’ve found using criss-cross multiplication in matrix given is correct, the error in row and column was found in the middle row and column but if the determinant you’ve found using criss-cross multiplication in the given matrix is the error, the error in row and column was found in the first and last row and column.•

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment