Your SlideShare is downloading. ×
Geraldo escalona
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Geraldo escalona

1,125
views

Published on

TRABAJO DE ALGEBRA …

TRABAJO DE ALGEBRA


0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,125
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
35
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. GRAFOS Integrantes Geraldo Escalona C.I 20319262 ENERO 2012
  • 2. Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices o nodos) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos los vértices por puntos y las aristas por líneas que los unen.Un vértice puede tener 0 o más aristas, pero toda arista debe unir exactamente 2 vértices. Llamaremos orden de un grafo a su número de vértices, |V|. Si |V| es finito se dice que el grafo es finito. Toda arista une dos vértices distintos
  • 3.  Si la arista carece de dirección se denota indistintamente {a,b} o {b,a}, siendo a y b los vértices que une. Si {a,b} es una arista, a los vértices a y b se les llama sus extremos. Dos vértices v, w se dice que son adyacentes si {v,w} V (o sea, si existe una arista entre ellos) Llamaremos grado de un vértice al número de aristas de las que es extremo. Se dice que un vértice es ‘par’ o ‘impar’ según lo sea su grado.
  • 4.  Sean x, y V, se dice que hay un camino en G de x a y si existe una sucesión finita no vacía de aristas {x,v1}, {v1,v2},..., {vn,y}. En este caso.  x e y se llaman los extremos del camino  El número de aristas del camino se llama la longitud del camino  Si los vértices no se repiten el camino se dice propio o simple.  Si hay un camino no simple entre 2 vértices, también habrá un camino simple entre ellos  Cuando los dos extremos de un camino son iguales, el camino se llama circuito o camino cerrado o ciclo (sin aristas repetidas).  Llamaremos ciclo a un circuito simple (no existen vertices repetidos excepto el primero y el ultimo)  Un vértice a se dice accesible desde el vértice b si existe un camino entre ellos. Todo vértice es accesible respecto a si mismo
  • 5. Representación de grafos. Matriz de incidencia. Matriz de adyacencia. Dado un grafo G = (V, E) con n vértices {v1, .. vn} su matriz de adyacencia es la matriz de orden n n, A(G)=(aij) donde aij es el número de aristas que unen los vértices vi y vj
  • 6. Se denomina grafo euleriano, a un grafo conexo G que tiene una cola cerrada que incluye todas las aristas de G.Teorema de Euler: Un grafo es euleriano si y sólo si cada vértice es de grado par. Si tiene exactamente dos vértices impares es recorrible (la cola no será cerrada) y se llama semieuleriano.
  • 7.  Un ciclo o circuito euleriano es aquel camino que recorre todas las aristas de un grafo cortando cinco veces por cada arco (arista) del grafo, siendo condición necesaria que regrese al vértice inicial de salida (ciclo = camino en un grafo donde coinciden vértice inicial o de salida y vértice final o meta). Una definición más formal lo define como: "aquel ciclo que contiene todas las aristas de un grafo solamente una vez".
  • 8.  Un camino hamiltoniano es un camino que recorre todos los vértices de un grafo sin pasar dos veces por el mismo vértice. Si el camino es cerrado se dice un ciclo hamiltoniano Un grafo G se dice hamiltoniano si tiene un ciclo hamiltoniano. A diferencia de los grafos eulerianos, no hay una caracterización de cuando un grafo tiene un ciclo o un camino hamiltoniano. Si un grafo es conexo con |V| 3 y para cada par de vértices la suma de sus grados es mayor o igual que el número de vértices entonces es hamiltoniano.
  • 9.  Un grafo se dice un árbol si es conexo y no tiene ciclos.  Los primeros dos grafos son árboles:
  • 10.  Gracias a la teoría de grafos se pueden resolver diversos problemas como por ejemplo la síntesis de circuitos secuenciales, contadores o sistemas de apertura. Se utiliza para diferentes áreas por ejemplo, Dibujo computacional, en toda las áreas de Ingeniería.  Los grafos se utilizan también para modelar trayectos como el de una línea de autobús a través de las calles de una ciudad, en el que podemos obtener caminos óptimos para el trayecto aplicando diversos algoritmos como puede ser el algoritmo de Floyd. Para la administración de proyectos, utilizamos técnicas como PERT en las que se modelan los mismos utilizando grafos y optimizando los tiempos para concretar los mismos. La teoría de grafos también ha servido de inspiración para las ciencias sociales, en especial para desarrollar un concepto no metafórico de red social que sustituye los nodos por los actores sociales y verifica la posición, centralidad e importancia de cada actor dentro de la red. Esta medida permite cuantificar y abstraer relaciones complejas, de manera que la estructura social puede representarse gráficamente. Por ejemplo, una red social puede representar la estructura de poder dentro de una sociedad al identificar los vínculos (aristas), su dirección e intensidad y da idea de la manera en que el poder se transmite y a quiénes.  Los grafos son importantes en el estudio de la biología y hábitat. El vértice representa un hábitat y las aristas (o "edges" en inglés) representa los senderos de los animales o las migraciones. Con esta información, los científicos pueden entender cómo esto puede cambiar o afectar a las especies en su hábitat.

×