Semantics Web:how you can make up your own truth
Who Am I?
Talk Subject
Semantic Webvs. semantic web
Semantic Web  Linked Data            Semantic Tech                TripleNLP                                 ML            ...
Semantics
I Love Pizza     =  I Pizza
Semantic Data
RDF
Triple
Subject   Predicate   Object                       Pam          SpouseCarmen           Child                      Griffin
Subject/Predicate/Object           =  Row/Column/Value
RDF/XML
N3
NTriples
Triplestores
NoSQL
Key-Value      BigTableDocument Store   Graph
Key-Value      BigTableDocument Store   Graph
D2R Server
Differences vs.   RDBMS
1. Subject = URI
AnyoneAnythingAnything
2. Inference
Subject   Predicate    Object                         Pam          SpouseCarmen                Child           Child      ...
Ontologies
An ontology is a specification of aconceptualization.
Relationships
A Simple Animal Ontology Body Part                          Living Thing                           eats!               has...
RDFS
Properties:Label,SubClass, Range
OWL
Relationships:    sameAs,differentFrom
3. Linked Data
May 2008
March 2009?
August 2010?
LinkedVocabularies
Friend of aFriend (FOAF)
Dublin Core (title, date, subject)
Simple  Knowledge OrganizationSystem (SKOS)
SemanticallyInterlinked Online   Communities      (SIOC)
4. Network   Effect
Using RDF
SPARQL
Creation of New      Data
5. Embedded Publishing
RDFa, eRDF &Microformats
LinkedIn:
So?
Linked Data +   EmbeddedSemantic Data =
Schema.org
Google, MS,  Yahoo
Google Rich Snippets
Study: Best Buy
GoodRelations  Ontology
How AboutPublishers?
Triplify
Publishing Plugin
Drupal
RDFa
By Default
And?
Facebook
OpenGraph
Big Data
MetadataDiscovery
Example:Hadoop
Kasabi
Conclusion
Questions?
gcaprio@1530technologies.com   www.twitter.com/gcaprio
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Semantic web
Upcoming SlideShare
Loading in...5
×

Semantic web

470

Published on

Semantic Web & Linked Data presentational overview

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
470
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Thing / Property / Value\n
  • \n
  • Thing / Property / Value\n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Thing / Property / Value\n
  • Put simply, an ontology is a specification of the characteristics of a domain. In other words, precisely what it mean for something to be in a particular domain.\n \nA taxonomy is simply a hierarchical categorization or classification of entities within a domain.\n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Network & Links of People\n
  • Simple vocab ( label, description, etc... ) \n
  • Classification System ( concept, definition, etc... ) \n
  • Post, comment, etc...\n
  • \n
  • \n
  • SPARQL Protocol and RDF Query Language\n
  • \n
  • \n
  • eRDF = non W3C copy of microformats\nRDFa = W3C copy of microformats.\n
  • eRDF = non W3C copy of microformats\nRDFa = W3C copy of microformats.\n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Semantic web

    1. 1. Semantics Web:how you can make up your own truth
    2. 2. Who Am I?
    3. 3. Talk Subject
    4. 4. Semantic Webvs. semantic web
    5. 5. Semantic Web Linked Data Semantic Tech TripleNLP ML Stores
    6. 6. Semantics
    7. 7. I Love Pizza = I Pizza
    8. 8. Semantic Data
    9. 9. RDF
    10. 10. Triple
    11. 11. Subject Predicate Object Pam SpouseCarmen Child Griffin
    12. 12. Subject/Predicate/Object = Row/Column/Value
    13. 13. RDF/XML
    14. 14. N3
    15. 15. NTriples
    16. 16. Triplestores
    17. 17. NoSQL
    18. 18. Key-Value BigTableDocument Store Graph
    19. 19. Key-Value BigTableDocument Store Graph
    20. 20. D2R Server
    21. 21. Differences vs. RDBMS
    22. 22. 1. Subject = URI
    23. 23. AnyoneAnythingAnything
    24. 24. 2. Inference
    25. 25. Subject Predicate Object Pam SpouseCarmen Child Child Griffin
    26. 26. Ontologies
    27. 27. An ontology is a specification of aconceptualization.
    28. 28. Relationships
    29. 29. A Simple Animal Ontology Body Part Living Thing eats! has part! PlantArm Animal eats! Leg eats! Grass Herbivore Person Tree Carnivore Cow
    30. 30. RDFS
    31. 31. Properties:Label,SubClass, Range
    32. 32. OWL
    33. 33. Relationships: sameAs,differentFrom
    34. 34. 3. Linked Data
    35. 35. May 2008
    36. 36. March 2009?
    37. 37. August 2010?
    38. 38. LinkedVocabularies
    39. 39. Friend of aFriend (FOAF)
    40. 40. Dublin Core (title, date, subject)
    41. 41. Simple Knowledge OrganizationSystem (SKOS)
    42. 42. SemanticallyInterlinked Online Communities (SIOC)
    43. 43. 4. Network Effect
    44. 44. Using RDF
    45. 45. SPARQL
    46. 46. Creation of New Data
    47. 47. 5. Embedded Publishing
    48. 48. RDFa, eRDF &Microformats
    49. 49. LinkedIn:
    50. 50. So?
    51. 51. Linked Data + EmbeddedSemantic Data =
    52. 52. Schema.org
    53. 53. Google, MS, Yahoo
    54. 54. Google Rich Snippets
    55. 55. Study: Best Buy
    56. 56. GoodRelations Ontology
    57. 57. How AboutPublishers?
    58. 58. Triplify
    59. 59. Publishing Plugin
    60. 60. Drupal
    61. 61. RDFa
    62. 62. By Default
    63. 63. And?
    64. 64. Facebook
    65. 65. OpenGraph
    66. 66. Big Data
    67. 67. MetadataDiscovery
    68. 68. Example:Hadoop
    69. 69. Kasabi
    70. 70. Conclusion
    71. 71. Questions?
    72. 72. gcaprio@1530technologies.com www.twitter.com/gcaprio
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×