Your SlideShare is downloading. ×
0
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

5

1,233

Published on

Published in: Business, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,233
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
131
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. <ul><li>Iron Ore and Steel </li></ul>
  • 2. <ul><li>A.) Mining Iron Ore </li></ul><ul><li>1.) Drill and blast </li></ul><ul><li>Hematite (Fe 2 0 3 ) </li></ul><ul><li>Magnetite (Fe 3 0 4 ) </li></ul><ul><li>2.) Shovel into a truck and bring to mill </li></ul><ul><li>3.) Crush into a powder </li></ul><ul><li>4.) Add clay and roll into balls, harden in kiln </li></ul><ul><li>5.) Ship to steel mill </li></ul>
  • 3. http://www.cleveland-cliffs.com/MiningOperations&amp;Technology/ Open Pit Mining
  • 4. Blasting Hauling
  • 5. Crushing Secondary Mill Primary Mill
  • 6. Separating Iron Concentrate from Impurities Settling Tank Magnetic Separation
  • 7. Removing Water Rolling into Pellets
  • 8. Hardening in Kiln Pellet Stockpile
  • 9. <ul><li>B.) Making Pig Iron from Iron Ore </li></ul><ul><li>1.) Melt Iron Ore in a Blast Furnace with Limestone and coke. </li></ul><ul><li>2.) Coke is almost pure carbon made from coal. </li></ul><ul><li>3.) Limestone is a flux, it helps remove impurities such as sand from the iron. </li></ul><ul><li>4.) Blowing hot air (1100 0 F) past the coke causes a reaction that creates high enough temperatures (3000 0 F) to melt the iron. </li></ul>
  • 10. B.) Making Pig Iron from Iron Ore Figure prepared by John A. Ricketts, Ispat Inland, Inc.
  • 11. B.) Making Pig Iron from Iron Ore Figure prepared by John A. Ricketts, Ispat Inland, Inc.
  • 12. <ul><li>C.) Making Steel from Pig Iron </li></ul><ul><li>1.) heating pig iron (4%C) in a Converter burns off Carbon to 2% or less. </li></ul><ul><li>a.) Electric Arc Furnace </li></ul><ul><li>b.) Oxygen Lance Furnace </li></ul><ul><li>2.) scrap steel and alloying elements are added to the pot . </li></ul><ul><li>3.) test steel composition. </li></ul><ul><li>4.) steel is cast into ingots or or continuous pours. </li></ul>
  • 13. Iron Ore and Steel Figure from AISI website: http://www.steel.org/learning/flowline/index.htm
  • 14. <ul><li>Basic Oxygen Steelmaking Plant showing scrap being charged into the BOF vessel. A ladle full of hot metal is seen to the right. John Stubbles photo </li></ul>
  • 15. C.) Making Steel from Pig Iron <ul><li>A ladle of molten steel leaving for the ladle metallurgical facility or the caster. John Stubbles photo </li></ul>
  • 16. BOF Vessel in Its Operating Positions BOF Vessel in Its Operating Positions. (Ref: Making, Shaping, and Treating of Steel, 11th Edition, Steelmaking And Refining Volume. AISE Steel Foundation, 1998, Pittsburgh PA) 1. 1. 2. 3. 4. 5. 6.
  • 17. C.) Making Steel from Pig Iron <ul><li>Section through the BOF vessel during oxygen blowing. (Ref: Making, Shaping, and Treating of Steel, 11th Edition, Steelmaking And Refining Volume. AISE Steel Foundation, 1998, Pittsburgh PA) </li></ul>
  • 18. C.) Making Steel from Pig Iron Figure from AISI website: http://www.steel.org/learning/flowline/index.htm
  • 19. C.) Making Steel from Pig Iron - Electric Arc Furnace Figure by Jeremy A. T. Jones, Nupro Corporation
  • 20. <ul><li>D.) Rolling Mill </li></ul><ul><li> </li></ul><ul><li> </li></ul>Figure from AISI website: http://www.steel.org/learning/flowline/index.htm
  • 21. <ul><li>D.) Rolling Mill </li></ul><ul><li>1.) Slabs are rolled into sheets (&lt;1/4”) </li></ul><ul><li>or plates (&gt;1/4”). </li></ul><ul><li>2.) Blooms are made into Billets . </li></ul><ul><li>3.) Billets are rolled into bars and shapes. </li></ul><ul><li>4.) Bars can be drawn into wire . </li></ul><ul><li>5.) Effects of rolling. </li></ul><ul><li>a.) Anisotropic properties. </li></ul><ul><li>b.) Cold rolling hardens steel more than hot rolling . </li></ul><ul><li> </li></ul>
  • 22. <ul><li>E.) Nomenclature </li></ul><ul><li>10--Plain Carbon </li></ul><ul><li>11-- Free Machining </li></ul><ul><li>13--High Manganese </li></ul><ul><li>2---Nickel Steels </li></ul><ul><li>Etc. </li></ul>
  • 23. http://www.geneva.com/tour.html http://www.geneva.com/tour.html
  • 24. <ul><li>G.) References </li></ul><ul><li>1.) AISI Website http://www.steel.org/learning </li></ul><ul><li>2.) John A. Ricketts, Ispat Inland, Inc. </li></ul><ul><li>3.) John Stubbles, Steel Industry Consultant </li></ul><ul><li>4.) By Jeremy A. T. Jones, Nupro Corporation </li></ul>
  • 25. <ul><li>F.) Forging </li></ul><ul><li>1.) Open-Die Drop-Forging </li></ul>
  • 26. CAST IRON
  • 27. A.) Gray Cast Iron <ul><li>1.) Composition (in addition to Fe): </li></ul><ul><ul><li>4% Carbon ( + ) in the form of graphite flakes that form tiny cracks. </li></ul></ul><ul><ul><li>1-3% Silicon (Si) </li></ul></ul><ul><ul><li>Trace amounts of Mn and P </li></ul></ul>
  • 28. <ul><li>2.)Classified by Tensile Strength </li></ul><ul><ul><li>ASTM 20 means  u = 20 ksi </li></ul></ul>A.) Gray Cast Iron
  • 29. <ul><li>3.) Advantages </li></ul><ul><ul><li>soft, easy to machine </li></ul></ul><ul><ul><li>good damping </li></ul></ul><ul><ul><li>inexpensive </li></ul></ul>A.) Gray Cast Iron
  • 30. B.) White Cast Iron <ul><li>1.) Composition (in addition to Fe): </li></ul><ul><ul><li>2.5-3.5% Carbon ( + ) C in combined form (iron carbide) </li></ul></ul><ul><ul><li>1-3% Silicon (Si) </li></ul></ul><ul><li>2.)Classified by  u ,  y , and %L </li></ul><ul><ul><li>Example/ 60:40:18 </li></ul></ul>
  • 31. <ul><ul><li>3.) Advantages </li></ul></ul><ul><ul><li>hard (BHN &gt; 400) - good wear resistance </li></ul></ul><ul><ul><li>( grinding mills etc.) good damping </li></ul></ul><ul><ul><li>high compressive strength ( 200,000 psi) </li></ul></ul>B.) White Cast Iron
  • 32. <ul><ul><li>4.) Disadvantages </li></ul></ul><ul><ul><li>Brittle </li></ul></ul><ul><ul><li>Difficult to machine </li></ul></ul>B.) White Cast Iron
  • 33. C.) Ductile Iron <ul><li>1.) Composition: Carbon is in nodular (round) form instead of free flakes or iron carbide): </li></ul><ul><ul><li>2.5-3.5% Carbon ( + ) </li></ul></ul><ul><ul><li>0.80% Mn </li></ul></ul><ul><ul><li>1.8-2.8% Si </li></ul></ul><ul><ul><li>2.)Classified by  u ,  y , and %L </li></ul></ul><ul><ul><li>Example/ 60:40:18 </li></ul></ul>
  • 34. C.) Ductile Iron <ul><li>1.) Nodule Photo </li></ul>
  • 35. <ul><ul><li>3.) Advantages </li></ul></ul><ul><ul><li>High Tensile Strength (50-100ksi) </li></ul></ul><ul><ul><li>(40-150 ksi Compressive Strength) </li></ul></ul><ul><ul><li>High Ductility (2-15%) </li></ul></ul><ul><ul><li>3.) Disadvantages </li></ul></ul><ul><ul><li>Higher Cost than Gray Cast Iron </li></ul></ul>C.) Ductile Iron

×