Upcoming SlideShare
×

# 311 Ch17

924 views

Published on

Published in: Health & Medicine, Career
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

Views
Total views
924
On SlideShare
0
From Embeds
0
Number of Embeds
33
Actions
Shares
0
22
0
Likes
0
Embeds 0
No embeds

No notes for slide

### 311 Ch17

1. 1. IX.) Combined Stresses A.) Biaxial Bending  b = M x + M y S x S y
2. 2. B.) Combined Bending & Axial Stresses  = + P + M A S
3. 3. C.) Eccentrically Loaded Axial Members M = Pe , where “e” = “eccentricity”  = + P + Mc , A I Replace M with Pe:  = + P + Mc A I
4. 4. D.) Stress Element  x  = Normal Stress in x direction  y  = Normal Stress in y direction  xy  = Shear Stress in x and y direction  y  xy  x  xy x  xy  xy  y  x
5. 5. D.) Combined Normal & Shear Stresses  n  =  x  cos 2  y  sin 2  xy  sin  cos   v  = (  x  y  sin  cos  xy  cos 2  sin 2   y  n  v  xy  x  xy y x 
6. 6. E.) Maximum Normal Stresses (Principal Stresses)  1,2  = 0.5(  x  y    (  x  y   +  xy   The maximum normal stresses occur on a plane whose normal is at the angle  p with the x-axis, determined from: tan(2  p ) =  xy   (  x  y 
7. 7. F.) Maximum Shear Stress  v,max  =   (  x  y   +  xy  The maximum shear stress occurs on a plane whose normal is at the angle  v with the x-axis, determined from: tan(2  v ) = (  x  y   xy 
8. 8. <ul><li>G.)Mohr’s Circle </li></ul><ul><li>Otto Mohr developed a useful graphical method to visualize the principal stress equations. </li></ul><ul><li>The coordinates of a point on Mohr’s Circle give the normal and shear stresses on a given plane…… </li></ul>
9. 9. <ul><li>G.)Mohr’s Circle </li></ul><ul><li>and the orientation of the line from the center of the circle to the given point gives the orientation of the plane on which those normal and shear stress are acting. </li></ul><ul><li>angles measured on Mohr’s circle are always double the angles measured on the stress element. </li></ul>
10. 10. G.)Mohr’s Circle
11. 11. G.)Mohr’s Circle