SlideShare a Scribd company logo
1 of 4
Download to read offline
Formación continua. Topología – Breve referencia para la
introducción al estudio de las propiedades de compacidad y
conexidad.
Prof. Lic. Lucas López.
Nos referiremos a estas dos propiedades en espacios topológicos, la conexidad y la compacidad,
fundamentalmente por dos razones. Una de ellas, es que fuertes teoremas del Análisis
Matemático Real, se basan en el cumplimiento de estas propiedades en determinados contextos
(a saber, en el espacio topológico usual , los intervalos cerrados y acotados del tipo [a; b]
resultan tanto compactos como conexos; y muchos resultados dependen de propiedades de éstos,
como el teorema del valor intermedio de las funciones continuas y otros). Y por otro lado,
perfilándonos hacia un estudio más profundo en Topología, porque las mencionadas propiedades
son lo que hemos definido como propiedades topológicas. Hemos mencionado que las
propiedades así denominadas, son aquellas que se mantienen bajo homeomorfismos. Recordemos
dichas definiciones:
Def.: Sean dos espacios topológicos (X1, ), (X2, ) y una función X1 X2. Diremos que es un
homeomorfismo, si y solo si:
i) es biyectiva.
ii) es continua.
iii) es continua.
A partir de esta definición, podemos definir la siguiente relación de equivalencia entre la familia de
espacios topológicos: (X1, ) (X2, ) X1 X2, homeonorfismo.
Notemos que esta relación, así definida, es efectivamente de equivalencia: La relación es reflexiva:
en efecto, para cada espacio topológico (X1, ) se cumple que (X1, ) (X1, ), ya que existe el
homeomorfismo identidad X1 X1 dado por . La relación es también simétrica, ya
que si: (X1, ) (X2, ), entonces existe X1 X2, homeomorfismo. Pero si X1 X2 es un
homeomorfismo, entonces X2 X1 queda bien definida y es también un homeomorfismo
(¿Por qué?), y entonces, por definición (X2, ) (X1, ). Por último, veamos que la relación
definida también es transitiva. En efecto, si (X1, ) (X2, ) y (X2, ) (X3, ), debe ocurrir
por definición, la existencia de homeomorfismos X1 X2 y X2 X3. Es fácil mostrar que la
composición X1 X3 es también un homeomorfismo (¿Lo es?), y entonces de nuevo, por
definición se cumplirá que (X1, ) (X3, ).
Si la observamos con detenimiento, la definición de un homeomorfismo resultará natural en el
contexto de nuestro estudio, porque al exigir que, tanto la función definida como su inversa, sean
continuas y biyectivas, existirá una correspondencia biunívoca entre los abiertos de una y otra
topología.
También, como la relación es de equivalencia, se establece una partición natural sobre la
familia de espacios topológicos. De aquí, que toda propiedad topológica (aquellas que se
conservan entre espacios homeomorfos) será mantenida entre los diferentes espacios topológicos
que estén en la misma “celda” de esta partición. Con lo cual es posible hacer una caracterización
de los espacios topológicos en cuanto a la presencia o no de sus propiedades topológicas.
Hemos observado en clase algunas propiedades que no son topológicas, como la acotación de los
conjuntos o la “longitud”. También observamos, por ejemplo, que la propiedad del cumplimiento
de la condición de Hausdorff si es una propiedad topológica.
Las propiedades de compacidad y conexidad, nos darán dos ejemplos más de propiedades
topológicas.
Compacidad.
Def.: Sea (X, ) un espacio topológico, X. Diremos que la familia
es un “cubrimiento por abiertos de ”, si y sólo si,
. Diremos también que el cubrimiento es un “cubrimiento finito de ”, si su cardinal
es finito. Y por último, dado un cubrimiento de , diremos que es un “subcubrimiento de
sobre ”, si y también es un cubrimiento de .
¿Qué ejemplos de cubrimientos por abiertos conocemos?
Ahora definamos la propiedad de compacidad.
Def.: Sea (X, ) un espacio topológico, X. Diremos que es compacto, si y sólo si, para cada
cubrimiento de se puede hallar un subcubrimiento finito ´, de sobre .
El teorema de Heine-Borel muestra que en el espacio topológico usual, definido sobre la recta de
los reales, los intervalos del tipo [a; b] son compactos (Ver “Topología General” – Lipschutz – pag.
49). Naturalmente, si en cambio queremos mostrar que cierto conjunto no es compacto, entonces
debemos encontrar la existencia de algún cubrimiento por abiertos del conjunto que no pueda
reducirse a un subcubrimiento finito de dicho conjunto.
Veamos que, también para la topología usual de los reales, los intervalos del tipo (a; b) no son
compactos. Tomemos para ello el estudio del intervao (0; 1), y notemos que la familia
constituye un cubrimiento por abiertos de (0; 1), pero que no es reducible a
ningún subcubrimiento finito de (0; 1) sobre .
Observemos por último que la propiedad de un conjunto de ser compacto, es una propiedad
topológica.
En efecto, sean los espacios topológicos (X1, ); (X2, ), X1 compacto. Sea X1 X2 un
homeomorfismo (esto es, (X1, ) (X2, )). Entonces X2 es compacto.
P/
Sea un cubrimiento por abiertos de X2. Por lo tanto
. Veamos que se puede reducir a un subcubrimiento finito por abiertos de
sobre En efecto, dado que es continua, se cumplirá que ,para cada índice .
También, como es biyectiva, entonces . Por estas
dos consecuencias, la familia constituye un cubrimiento por abiertos de . Pero
como, por hipótesis, es compacto, debe existir un número finito con
tal que . Pero entonces, por la continuidad y la biyectividad de ,
debe ocurrir también que , demostrando la compacidad de
.
De más está aclarar, que en todas las observaciones anteriores puede reemplazarse el referencial
X por , y hablar de espacios compactos o no compactos.
Conexidad.
Def.: Sea (X, ) un espacio topológico. Diremos que X es conexo, si los únicos conjuntos abiertos y
cerrados a la vez de Sea son X y .
La condición que define la conexidad puede resultar más natural en términos de si el espacio es o
no separable. Para esto, definimos primero una separación.
Def.: Sea (X, ) un espacio topológico. Diremos que dos conjuntos abiertos constituyen una
separación de X, si y sólo si,  X .
Def.: Sea (X, ) un espacio topológico. Si (X, ) tiene una separación, entonces diremos que es no
conexo o inconexo. Si (X, ) no tiene una separación, entonces diremos que es conexo.
Se propone probar la equivalencia entre la primera y la segunda definición de espacio conexo.
Nos limitaremos solamente a observar que se trata ésta de una propiedad topológica.
Efectivamente, sean los espacios topológicos (X1, ); (X2, ). Considérese (X1, ) conexo. Sea
X1 X2 un homeomorfismo (esto es, (X1, ) (X2, )). Entonces (X2, ) es conexo.
P/
Supongamos, contrario con la afirmación que formulamos, que (X2, ) es no conexo. Entonces,
por definición, deberán existir dos abiertos de tales que  X2 . Por la
continuidad de X1 X2 debe cumplirse que y sean abiertos de . También, por
la biyectividad de ,   (ya que es uno a uno), y
también X2 X1 (usando primero el agumento de ser
uno a uno y luego de ser sobre). Pero entonces, los abiertos y constituyen una
separación para (X1, ), lo cual es absurdo, ya que lo supusimos conexo en la hipótesis. Por lo
tanto, no puede existir una separación , para (X2, ), y por definición debe ser conexo.

More Related Content

What's hot (19)

Estructura d.u1
Estructura d.u1Estructura d.u1
Estructura d.u1
 
Ppt lógica ii. cepre uni 2017-i
Ppt lógica ii. cepre uni 2017-iPpt lógica ii. cepre uni 2017-i
Ppt lógica ii. cepre uni 2017-i
 
Silogismo Compuesto
Silogismo Compuesto Silogismo Compuesto
Silogismo Compuesto
 
Series y sucesiones
Series y sucesionesSeries y sucesiones
Series y sucesiones
 
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONALLÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL
 
Asignacion 1 estructura d.
Asignacion 1 estructura d.Asignacion 1 estructura d.
Asignacion 1 estructura d.
 
Pontificia universidad católica del ecuador ley de la entropia
Pontificia universidad católica del ecuador ley de la entropiaPontificia universidad católica del ecuador ley de la entropia
Pontificia universidad católica del ecuador ley de la entropia
 
Estructuras Discretas. Articulo unidad 1
Estructuras Discretas. Articulo unidad 1Estructuras Discretas. Articulo unidad 1
Estructuras Discretas. Articulo unidad 1
 
Metodo Demostrativo
Metodo DemostrativoMetodo Demostrativo
Metodo Demostrativo
 
Estructuras discretas I
Estructuras discretas IEstructuras discretas I
Estructuras discretas I
 
Asignación 1 Estructura Discreta
Asignación 1  Estructura DiscretaAsignación 1  Estructura Discreta
Asignación 1 Estructura Discreta
 
Trabajo de estructura discreta
Trabajo de estructura discretaTrabajo de estructura discreta
Trabajo de estructura discreta
 
Gelstalt
GelstaltGelstalt
Gelstalt
 
Leyes del algebra
Leyes del algebraLeyes del algebra
Leyes del algebra
 
I. Axiomatica
I. AxiomaticaI. Axiomatica
I. Axiomatica
 
Lógica según escoto
Lógica según escoto Lógica según escoto
Lógica según escoto
 
Relacion de equivalencia
Relacion de equivalenciaRelacion de equivalencia
Relacion de equivalencia
 
Calculo de predicados
Calculo de predicadosCalculo de predicados
Calculo de predicados
 
Algebra
AlgebraAlgebra
Algebra
 

Similar to Apunte introducción a_la_compacidad_y_conexidad

Lgica de predicados y sistemas formales
Lgica de predicados y sistemas formalesLgica de predicados y sistemas formales
Lgica de predicados y sistemas formales
Miguel Angel Zamora
 
35 lacan - diccionario de topologia lacaniana
35   lacan -  diccionario de topologia lacaniana35   lacan -  diccionario de topologia lacaniana
35 lacan - diccionario de topologia lacaniana
Djalma Argollo
 
35 diccionario de topologia lacaniana
35 diccionario de topologia lacaniana35 diccionario de topologia lacaniana
35 diccionario de topologia lacaniana
Isabel Virginia Lopez
 
144 tesiscarballo
144 tesiscarballo144 tesiscarballo
144 tesiscarballo
florxita21
 

Similar to Apunte introducción a_la_compacidad_y_conexidad (20)

Teoria de la homotopia
Teoria de la homotopiaTeoria de la homotopia
Teoria de la homotopia
 
Topo1
Topo1Topo1
Topo1
 
A ptopo4
A ptopo4A ptopo4
A ptopo4
 
Límite infinito y en el infinito
Límite infinito y en el infinitoLímite infinito y en el infinito
Límite infinito y en el infinito
 
VECINDADES
VECINDADESVECINDADES
VECINDADES
 
Santillan javieru4afi
Santillan javieru4afiSantillan javieru4afi
Santillan javieru4afi
 
Continuidad
ContinuidadContinuidad
Continuidad
 
Fundadores/ Inventores del Dominio y el Rango
Fundadores/ Inventores del Dominio y el RangoFundadores/ Inventores del Dominio y el Rango
Fundadores/ Inventores del Dominio y el Rango
 
Por qué y para qué estudiar cohomología de De Rham p-ádica y su versión Logar...
Por qué y para qué estudiar cohomología de De Rham p-ádica y su versión Logar...Por qué y para qué estudiar cohomología de De Rham p-ádica y su versión Logar...
Por qué y para qué estudiar cohomología de De Rham p-ádica y su versión Logar...
 
Lgica de predicados y sistemas formales
Lgica de predicados y sistemas formalesLgica de predicados y sistemas formales
Lgica de predicados y sistemas formales
 
35 lacan - diccionario de topologia lacaniana
35   lacan -  diccionario de topologia lacaniana35   lacan -  diccionario de topologia lacaniana
35 lacan - diccionario de topologia lacaniana
 
35 diccionario de topologia lacaniana
35 diccionario de topologia lacaniana35 diccionario de topologia lacaniana
35 diccionario de topologia lacaniana
 
Diccionario de topologia lacaniana
Diccionario de topologia lacanianaDiccionario de topologia lacaniana
Diccionario de topologia lacaniana
 
Teoria de conjuntos
Teoria de conjuntosTeoria de conjuntos
Teoria de conjuntos
 
Estructura luis car
Estructura  luis carEstructura  luis car
Estructura luis car
 
Funciones (PRUEBA)
Funciones (PRUEBA)Funciones (PRUEBA)
Funciones (PRUEBA)
 
(2) funciones reales
(2) funciones reales(2) funciones reales
(2) funciones reales
 
Herradura
HerraduraHerradura
Herradura
 
Limites
LimitesLimites
Limites
 
144 tesiscarballo
144 tesiscarballo144 tesiscarballo
144 tesiscarballo
 

More from gacego

Codigos
CodigosCodigos
Codigos
gacego
 
81 tp de_logaritmo
81 tp de_logaritmo81 tp de_logaritmo
81 tp de_logaritmo
gacego
 
82 apm dominio-de_
82 apm dominio-de_82 apm dominio-de_
82 apm dominio-de_
gacego
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
gacego
 
Funcionesdevariablecompleja serie biologia
Funcionesdevariablecompleja serie biologiaFuncionesdevariablecompleja serie biologia
Funcionesdevariablecompleja serie biologia
gacego
 
180 12 07 nucleo prioritarios de aprendizajes de matematica
180 12 07 nucleo prioritarios de aprendizajes de matematica180 12 07 nucleo prioritarios de aprendizajes de matematica
180 12 07 nucleo prioritarios de aprendizajes de matematica
gacego
 
70 matemtica tp_2
70 matemtica tp_270 matemtica tp_2
70 matemtica tp_2
gacego
 
Beowulf lerate
Beowulf  lerateBeowulf  lerate
Beowulf lerate
gacego
 
82 apm dominio-de_ (2)
82 apm dominio-de_ (2)82 apm dominio-de_ (2)
82 apm dominio-de_ (2)
gacego
 
82 apm dominio-de_ (1)
82 apm dominio-de_ (1)82 apm dominio-de_ (1)
82 apm dominio-de_ (1)
gacego
 
82 apm dominio-de_ (1)
82 apm dominio-de_ (1)82 apm dominio-de_ (1)
82 apm dominio-de_ (1)
gacego
 
78 modelo 5_grado
78 modelo 5_grado78 modelo 5_grado
78 modelo 5_grado
gacego
 
81 tp de_logaritmo
81 tp de_logaritmo81 tp de_logaritmo
81 tp de_logaritmo
gacego
 
80 tp de_trigonome
80 tp de_trigonome80 tp de_trigonome
80 tp de_trigonome
gacego
 

More from gacego (14)

Codigos
CodigosCodigos
Codigos
 
81 tp de_logaritmo
81 tp de_logaritmo81 tp de_logaritmo
81 tp de_logaritmo
 
82 apm dominio-de_
82 apm dominio-de_82 apm dominio-de_
82 apm dominio-de_
 
Probabilidades
ProbabilidadesProbabilidades
Probabilidades
 
Funcionesdevariablecompleja serie biologia
Funcionesdevariablecompleja serie biologiaFuncionesdevariablecompleja serie biologia
Funcionesdevariablecompleja serie biologia
 
180 12 07 nucleo prioritarios de aprendizajes de matematica
180 12 07 nucleo prioritarios de aprendizajes de matematica180 12 07 nucleo prioritarios de aprendizajes de matematica
180 12 07 nucleo prioritarios de aprendizajes de matematica
 
70 matemtica tp_2
70 matemtica tp_270 matemtica tp_2
70 matemtica tp_2
 
Beowulf lerate
Beowulf  lerateBeowulf  lerate
Beowulf lerate
 
82 apm dominio-de_ (2)
82 apm dominio-de_ (2)82 apm dominio-de_ (2)
82 apm dominio-de_ (2)
 
82 apm dominio-de_ (1)
82 apm dominio-de_ (1)82 apm dominio-de_ (1)
82 apm dominio-de_ (1)
 
82 apm dominio-de_ (1)
82 apm dominio-de_ (1)82 apm dominio-de_ (1)
82 apm dominio-de_ (1)
 
78 modelo 5_grado
78 modelo 5_grado78 modelo 5_grado
78 modelo 5_grado
 
81 tp de_logaritmo
81 tp de_logaritmo81 tp de_logaritmo
81 tp de_logaritmo
 
80 tp de_trigonome
80 tp de_trigonome80 tp de_trigonome
80 tp de_trigonome
 

Apunte introducción a_la_compacidad_y_conexidad

  • 1. Formación continua. Topología – Breve referencia para la introducción al estudio de las propiedades de compacidad y conexidad. Prof. Lic. Lucas López. Nos referiremos a estas dos propiedades en espacios topológicos, la conexidad y la compacidad, fundamentalmente por dos razones. Una de ellas, es que fuertes teoremas del Análisis Matemático Real, se basan en el cumplimiento de estas propiedades en determinados contextos (a saber, en el espacio topológico usual , los intervalos cerrados y acotados del tipo [a; b] resultan tanto compactos como conexos; y muchos resultados dependen de propiedades de éstos, como el teorema del valor intermedio de las funciones continuas y otros). Y por otro lado, perfilándonos hacia un estudio más profundo en Topología, porque las mencionadas propiedades son lo que hemos definido como propiedades topológicas. Hemos mencionado que las propiedades así denominadas, son aquellas que se mantienen bajo homeomorfismos. Recordemos dichas definiciones: Def.: Sean dos espacios topológicos (X1, ), (X2, ) y una función X1 X2. Diremos que es un homeomorfismo, si y solo si: i) es biyectiva. ii) es continua. iii) es continua. A partir de esta definición, podemos definir la siguiente relación de equivalencia entre la familia de espacios topológicos: (X1, ) (X2, ) X1 X2, homeonorfismo. Notemos que esta relación, así definida, es efectivamente de equivalencia: La relación es reflexiva: en efecto, para cada espacio topológico (X1, ) se cumple que (X1, ) (X1, ), ya que existe el homeomorfismo identidad X1 X1 dado por . La relación es también simétrica, ya que si: (X1, ) (X2, ), entonces existe X1 X2, homeomorfismo. Pero si X1 X2 es un homeomorfismo, entonces X2 X1 queda bien definida y es también un homeomorfismo (¿Por qué?), y entonces, por definición (X2, ) (X1, ). Por último, veamos que la relación definida también es transitiva. En efecto, si (X1, ) (X2, ) y (X2, ) (X3, ), debe ocurrir por definición, la existencia de homeomorfismos X1 X2 y X2 X3. Es fácil mostrar que la composición X1 X3 es también un homeomorfismo (¿Lo es?), y entonces de nuevo, por definición se cumplirá que (X1, ) (X3, ). Si la observamos con detenimiento, la definición de un homeomorfismo resultará natural en el contexto de nuestro estudio, porque al exigir que, tanto la función definida como su inversa, sean continuas y biyectivas, existirá una correspondencia biunívoca entre los abiertos de una y otra topología.
  • 2. También, como la relación es de equivalencia, se establece una partición natural sobre la familia de espacios topológicos. De aquí, que toda propiedad topológica (aquellas que se conservan entre espacios homeomorfos) será mantenida entre los diferentes espacios topológicos que estén en la misma “celda” de esta partición. Con lo cual es posible hacer una caracterización de los espacios topológicos en cuanto a la presencia o no de sus propiedades topológicas. Hemos observado en clase algunas propiedades que no son topológicas, como la acotación de los conjuntos o la “longitud”. También observamos, por ejemplo, que la propiedad del cumplimiento de la condición de Hausdorff si es una propiedad topológica. Las propiedades de compacidad y conexidad, nos darán dos ejemplos más de propiedades topológicas. Compacidad. Def.: Sea (X, ) un espacio topológico, X. Diremos que la familia es un “cubrimiento por abiertos de ”, si y sólo si, . Diremos también que el cubrimiento es un “cubrimiento finito de ”, si su cardinal es finito. Y por último, dado un cubrimiento de , diremos que es un “subcubrimiento de sobre ”, si y también es un cubrimiento de . ¿Qué ejemplos de cubrimientos por abiertos conocemos? Ahora definamos la propiedad de compacidad. Def.: Sea (X, ) un espacio topológico, X. Diremos que es compacto, si y sólo si, para cada cubrimiento de se puede hallar un subcubrimiento finito ´, de sobre . El teorema de Heine-Borel muestra que en el espacio topológico usual, definido sobre la recta de los reales, los intervalos del tipo [a; b] son compactos (Ver “Topología General” – Lipschutz – pag. 49). Naturalmente, si en cambio queremos mostrar que cierto conjunto no es compacto, entonces debemos encontrar la existencia de algún cubrimiento por abiertos del conjunto que no pueda reducirse a un subcubrimiento finito de dicho conjunto. Veamos que, también para la topología usual de los reales, los intervalos del tipo (a; b) no son compactos. Tomemos para ello el estudio del intervao (0; 1), y notemos que la familia constituye un cubrimiento por abiertos de (0; 1), pero que no es reducible a ningún subcubrimiento finito de (0; 1) sobre . Observemos por último que la propiedad de un conjunto de ser compacto, es una propiedad topológica. En efecto, sean los espacios topológicos (X1, ); (X2, ), X1 compacto. Sea X1 X2 un homeomorfismo (esto es, (X1, ) (X2, )). Entonces X2 es compacto.
  • 3. P/ Sea un cubrimiento por abiertos de X2. Por lo tanto . Veamos que se puede reducir a un subcubrimiento finito por abiertos de sobre En efecto, dado que es continua, se cumplirá que ,para cada índice . También, como es biyectiva, entonces . Por estas dos consecuencias, la familia constituye un cubrimiento por abiertos de . Pero como, por hipótesis, es compacto, debe existir un número finito con tal que . Pero entonces, por la continuidad y la biyectividad de , debe ocurrir también que , demostrando la compacidad de . De más está aclarar, que en todas las observaciones anteriores puede reemplazarse el referencial X por , y hablar de espacios compactos o no compactos. Conexidad. Def.: Sea (X, ) un espacio topológico. Diremos que X es conexo, si los únicos conjuntos abiertos y cerrados a la vez de Sea son X y . La condición que define la conexidad puede resultar más natural en términos de si el espacio es o no separable. Para esto, definimos primero una separación. Def.: Sea (X, ) un espacio topológico. Diremos que dos conjuntos abiertos constituyen una separación de X, si y sólo si,  X . Def.: Sea (X, ) un espacio topológico. Si (X, ) tiene una separación, entonces diremos que es no conexo o inconexo. Si (X, ) no tiene una separación, entonces diremos que es conexo. Se propone probar la equivalencia entre la primera y la segunda definición de espacio conexo. Nos limitaremos solamente a observar que se trata ésta de una propiedad topológica. Efectivamente, sean los espacios topológicos (X1, ); (X2, ). Considérese (X1, ) conexo. Sea X1 X2 un homeomorfismo (esto es, (X1, ) (X2, )). Entonces (X2, ) es conexo. P/ Supongamos, contrario con la afirmación que formulamos, que (X2, ) es no conexo. Entonces, por definición, deberán existir dos abiertos de tales que  X2 . Por la continuidad de X1 X2 debe cumplirse que y sean abiertos de . También, por la biyectividad de ,   (ya que es uno a uno), y también X2 X1 (usando primero el agumento de ser uno a uno y luego de ser sobre). Pero entonces, los abiertos y constituyen una
  • 4. separación para (X1, ), lo cual es absurdo, ya que lo supusimos conexo en la hipótesis. Por lo tanto, no puede existir una separación , para (X2, ), y por definición debe ser conexo.