diapositivas
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

diapositivas

  • 627 views
Uploaded on

<div><strong><a>Verbo</a></strong><object height="355" width="425"><param /><param /><param /><param /></object><div>View more <a>presentations</a> from......

<div><strong><a>Verbo</a></strong><object height="355" width="425"><param /><param /><param /><param /></object><div>View more <a>presentations</a> from <a>gabriel-andrade</a>.</div></div>

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
627
On Slideshare
627
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
1
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Los números racionales No existe una notación universal para indicarlos, como , que es generalmente aceptada. Las razones son que el conjunto de Números Irracionales no constituyen ninguna estructura algebraica, como sí lo son los Naturales (), los Enteros (), losRacionales (), los Reales () y los Complejos (), por un lado, y que la es tan apropiada para designar al conjunto de Números Irracionales como al conjunto de Números Imaginarios Puros, lo cual puede crear confusión.
  • 2. Unidad educativa verbo divino• Nombre Gabriel Andrade• Curso noveno c• Materia informática• Profesora Lcda. Teresa Arguello• Año lectivo 2011-2012
  • 3. Los números irracionales• No existe una notación universal para indicarlos, como , que es generalmente aceptada. Las razones son que el conjunto de Números Irracionales no constituyen ninguna estructura algebraica, como sí lo son los Naturales (), los Enteros (), los Racionales (), los Reales () y los Complejos (), por un lado, y que la es tan apropiada para designar al conjunto de Números Irracionales como al conjunto de Números Imaginarios Puros, lo cual puede crear confusión.
  • 4. Los números irracionales• Tras distinguir los números componentes de la recta real en tres categorías: (naturales, enteros y racionales), podría parecer que ha terminado la clasificación de los números, pero aun quedan "huecos" por rellenar en la recta de los números reales. Los números irracionales son los elementos de dicha recta que cubren los vacíos que dejan los números racionales
  • 5. Notación• No existe una notación universal para indicarlos, como , que es generalmente aceptada. Las razones son que el conjunto de Números Irracionales no constituyen ninguna estructura algebraica, como sí lo son los Naturales (), los Enteros (), los Racionales (), los Reales () y los Complejos (), por un lado, y que la es tan apropiada para designar al conjunto de Números Irracionales como al conjunto de Números Imaginarios Puros, lo cual puede crear confusión
  • 6. Clasificación• Los números irracionales son los elementos de la recta real que no pueden expresarse mediante el cociente de dos enteros y se caracterizan por poseer infinitas cifras decimales no periódicas. De este modo, puede definirse al número irracional como un decimal infinito no periódico. En general, toda expresión en números decimales es solo una aproximación en números racionales al número irracional referido
  • 7. Clasificación• Los números irracionales se clasifican en dos tipos:• 1.- Número algebraico: Son la solución de alguna ecuación algebraica y se representan por un número finito de radicales libres o anidados; si "x" representa ese número, al eliminar radicales del segundo miembro mediante operaciones inversas, queda una ecuación algebraica de cierto grado. Todas las raíces no exactas de cualquier orden son irracionales algebraicos.
  • 8. Clasificación• .- Número trascendente: No pueden representarse mediante un número finito de raíces libres o anidadas; provienen de las llamadas funciones trascendentes (trigonométricas, logarítmicas y exponenciales, etc.) También surgen al escribir números decimales no periódicos al azar o con un patrón que no lleva periodo definido, respectivamente, como los dos siguientes
  • 9. Números trancedentes• Los llamados números trascendentes tienen especial relevancia ya que no pueden ser solución de ninguna ecuación algebraica. Los números pi y e son irracionales trascendentes, puesto que no pueden expresarse mediante radicales
  • 10. •Gracias por su atención