Appendice 1.2.1 geoanalitica equaz. disequazioni lineari

675 views
566 views

Published on

Matematica

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
675
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Dopo aver introdotto in sintesi i fondamenti relativi alle connessioni tra algebra e geometria attraverso: La definizione di sistema di assi cartesiani ortogonali nel piano La definizione della corrispondenza biunivoca tra i punti geometrici del piano e le coppie ordinate di numeri reali La definizione di direzione attraverso il concetto di vettore e la sua rappresentazione algebrica Passiamo ora determinare i criteri che ci permettono di esprimere algebricamente la retta nel piano.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • In this Gizmotm, you will be given an equation at the top of the problem area. You will be asked to solve the equation by finding the value of the variable thatmakes both sides of the equation equal. You will be able to click Show me at any time to see the solution to the equation. In the Gizmo, with Graph left side of equation and Graph right side of equation selected, notice the equation at the top, x + 2.7 = 4.1. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window.) Below the number line, notice that there is a slider for each term in the equation—two on the left and one on the right. On the left side, let the top slider represent the value of x , the variable. Leave this slider unchanged for now. You will use this one later, to solve the equation. Set the bottom left slider to the value of the constant, 2.7. (To quickly set a value, type a number in the box to the right of the slider and press Enter.) Notice the green arrow above the number line that represents 2.7. Does this arrow point to the left or right? On the right side, set the slider to 4.1, for the term on the right side of the equation. Notice the red arrow that represents 4.1. Does this arrow point to the left or right? To solve this equation, you need to find the value of x that makes the left side of the equation equal the right side of the equation. On this number line, that means lining up the two black points and the two vertical dotted lines. Experiment by dragging the x -slider slowly to the left and right. (Remember, in this case, the x -slider is the top slider on the left—the purple one.) What value for x lines up the black dots and the vertical dotted lines? What is the solution to this equation? Click on Show me to verify your answer. You should have found that the solution to the given equation is x = 1.4. Substitute this value in for x and simplify. What equation do you get? Click New. The Gizmo will give you the next equation, −4.6 + 1.9 = n − 1.2. (If this is not the problem you are given, restart the Gizmo by clicking Refresh or Reload in your browser window and then click New once.) Be sure that Graph left side of equation and Graph right side of equation are turned on. Set the sliders on the left to −4.6 and 1.9. Set the slider on the bottom right to −1.2 (not 1.2). Leave the slider that represents the variable set to zero for now. Notice the colored arrows above the number line that represent these values. Which arrows point to the left? Which ones point to the right? Explain why this is. If you drag the n -slider (the top right slider—the red one) to the left, do the points get closer together? What happens if you drag the n -slider to the right? Is the solution to this equation positive or negative? Explain how you can tell. What value of n makes the black dots and vertical dotted lines match? What is the solution to this equation? Click on Show me to verify your answer. Substitute the solution for n in the given equation. Simplify both sides of the equation. What do you get? Click New and practice more examples of solving equations with decimals.
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Analizziamo l’equazione generale della retta in quella che viene indicata come la formulazione implicita. Innanzitutto indagheremo sulle caratteristiche algebriche di tale equazione per scoprire le ragioni che ci permettono di affermare ad esempio che: Attribuendo arbitrariamente ai parametri a, b e c dei valori, l’insieme delle coppie (x;y), che sappiamo corrispondere a punti del piano e che “soddisfano” l’equazione ottenuta, risultano tutti allineati, ovvero appartenenti ad una stessa retta. Fissando viceversa i valori della coppia (x;y), ossia fissiamo un punto, lasciando variare i valori dei parametri a, b e c otterremo una serie di “rette” naturalmente del piano, ma tu passanti per il punto (x;y) fissato.
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Introduzione: Achille e l'impossibilità del moto Figura 3 Usando la proprietà delle proporzioni detta dello “scomponendo” si ottiene: (AB - BC) : BC = (AZ - BZ) : BZ, cioè (AB - BC) : BC = AB : BZ. Si tratta dunque di trovare il segmento BZ quarto proporzionale dopo tre segmenti noti, e questo si può fare, per esempio, sfruttando il teorema di Talete , ove AE = AD = AB - BC EF = BD = BC per cui la proporzione data equivale a AE : EF = AB : BZ. Ed ecco la costruzione geometrica: Laboratorio interattivo 1 Naturalmente coi numeri dati noi scriveremmo subito: (100 - 60) : 60 = 100 : z , ove z = s - 100 è la lunghezza del segmento BZ (spazio percorso dal fuggitivo). Si ricava immediatamente (per la cosiddetta regola “del tre semplice”: la regola del tre semplice è quella che fornisce il quarto termine della proporzione a : b = c : x con la formuletta x = bc / a ) Esercizio svolto Ora che sai tutto, prova a risolvere il seguente quesito: supponi che il fuggitivo corra su un sentiero rettilineo con una velocità di 6 m / s e che Achille, che corre a 10 m / s , sia distante 100 metri da esso, perpendicolarmente al sentiero. Figura 4 In che direzione e per quanto tempo dovrà correre Achille per raggiungere il fuggitivo? Quanti metri percorre Achille? Su una retta si segnano i punti A, B e C. Prolungata la retta oltre C, si deve trovare un punto Z tale che: AB : BC = AZ : BZ
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Dopo aver analizzato uno dei problemi storici per cui ha interesse e significato Lo studio della retta, affrontiamo lo studio in modo più diretto e sostanziale. In questa serie di slides noi avremo modo di riflettere su alcuni concetti della geometria Cartesiana.
  • Appendice 1.2.1 geoanalitica equaz. disequazioni lineari

    1. 1. L’interpretazione “grafica” in Geometria analitica piana della risoluzione di equazioni e disequazioni lineari <ul><li>Appendice 1 : </li></ul><ul><li>Recupero dei principali dei criteri di soluzione e di interpretazione grafica di: </li></ul><ul><li>Equazioni e disequazioni lineari </li></ul><ul><li>Sistemi di equazioni e disequazioni lineari </li></ul>
    2. 2. Equazioni di primo grado ad una incognita
    3. 3. Equazioni di primo grado ad una incognita
    4. 4. Equazioni di primo grado ad una incognita
    5. 5. Equazioni di primo grado ad una incognita
    6. 6. Equazioni di primo grado ad una incognita
    7. 7. Equazioni di primo grado ad una incognita
    8. 8. Equazioni di primo grado ad una incognita
    9. 9. Equazioni di primo grado ad una incognita <ul><li>Assessment Questions </li></ul><ul><li>1. What is the solution to x + 0.9 = 4.7? </li></ul><ul><li>A. x = 5.6 </li></ul><ul><li>B. x = 3.8 </li></ul><ul><li>C. x = −5.6 </li></ul><ul><li>D. x = −3.8 </li></ul><ul><li>2.Find the solution to −1.8 = 9.4 + a . </li></ul><ul><li>A. a = −7.6 </li></ul><ul><li>B. a = 7.6 </li></ul><ul><li>C. a = −11.2 </li></ul><ul><li>D. a = 11.2 </li></ul>
    10. 10. Equazioni di primo grado ad una incognita 3.Solve for d : −6.5 + d = −7.2. A. d = −0.7 B. d = 0.7 C. d = 13.7 D. d = −13.7 4.What is the solution to 3.1 − 1.3 = t + 2.9? A. t = 4.7 B. t = 7.3 C. t = 1.1 D. t = −1.1
    11. 11. Equazioni lineari a due incognite Sistemi di equazioni Avremmo quindi: per Achille: s = 10 t per il fuggitivo: s = 100 + 6 t .
    12. 12. Equazione generale o equazione in forma implicita 22.04.06 Equazione generale della retta ax + by + c = 0 asse x y = 0 asse y x = 0 retta parallela all’asse x y = k retta parallela all’asse y x = h retta passante per l’origine ax + by = 0 N.B. solo con b diverso da 0 le rette sono funzioni!
    13. 13. Equazioni lineari a una e a due incognite Interpretazione grafica - Sistemi di equazioni Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response.
    14. 14. Equazioni lineari a due incognite Sistemi di equazioni Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response.
    15. 15. Equazioni lineari a due incognite Sistemi di equazioni Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response.
    16. 16. Equazioni lineari a due incognite Sistemi di equazioni Solve an equation by graphing each side and finding the intersection of the lines. Vary the coefficients in the equation and explore how the graph changes in response.
    17. 17. Equazioni lineari a due incognite Sistemi di equazioni <ul><li>Assessment Questions </li></ul><ul><li>1. If you solve an equation by graphing each side as a separate line, </li></ul><ul><li>which of the following corresponds to the solution of the equation? </li></ul><ul><li>A. the x –coordinate of the intersection point </li></ul><ul><li>B. the y –coordinate of the intersection point </li></ul><ul><li>C. both the x –coordinate and the y –coordinate of the intersection point </li></ul><ul><li>D. there is only a solution if the lines are identical </li></ul><ul><li>2. If you graph both sides of an identity, what will the graph look like? </li></ul><ul><li>A. The graphs never intersect. </li></ul><ul><li>B. The graphs intersect at a single point. </li></ul><ul><li>C. The graphs are identical and intersect at infinitely many points. </li></ul><ul><li>D. The graphs intersect at exactly two points. </li></ul>
    18. 18. Equazioni lineari a due incognite Sistemi di equazioni Solve a system of linear equations by graphing and finding the intersection of the lines of the equations. Create a system of equations, examine its graph, matrix, and table of values, and determine the solution of the system.
    19. 19. Equazioni lineari a due incognite Sistemi di equazioni Solve a system of linear equations by graphing and finding the intersection of the lines of the equations. Create a system of equations, examine its graph, matrix, and table of values, and determine the solution of the system.
    20. 20. Disequazioni lineari a una e a due incognite Interpretazione grafica Sistemi di disequazioni Solve an inequality involving multiplication and division. Graph the solution on a number line.
    21. 21. Disequazioni lineari a una e a due incognite Interpretazione grafica Sistemi di disequazioni Solve an inequality involving multiplication and division. Graph the solution on a number line.
    22. 22. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response.
    23. 23. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica Solve an inequality involving absolute values using a graph of the absolute-value function. Vary the terms of the absolute-value function and vary the value that you are comparing it to. Then explore how the graph and solution set change in response.
    24. 24. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica <ul><li>Assessment Questions </li></ul><ul><li>1. The solution set of |2 x − 2| > 2 is the set of all x -values where </li></ul><ul><li>the graph y = |2 x − 2|   ?   the line y = 2. </li></ul><ul><li>A. is above </li></ul><ul><li>B. is below </li></ul><ul><li>C. intersects </li></ul><ul><li>D. does not intersect </li></ul>
    25. 25. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica <ul><li>2.Which of the inequalities below corresponds to the following </li></ul><ul><li>graph? </li></ul><ul><li>                                 </li></ul><ul><li>A. |−2 x − 4| = 6 </li></ul><ul><li>B. | x − 2| > 4 </li></ul><ul><li>C. |2 x + 4| ≤ 6 </li></ul><ul><li>D. | x + 2| ≤ 4 </li></ul>
    26. 26. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica <ul><li>3.The solution set x ≤ 2 or x ≥ 4 is consistent with an equation </li></ul><ul><li>of the form </li></ul><ul><li>A. | ax + b | ≤ c , where c is greater than zero. </li></ul><ul><li>B. | ax + b | ≥ c , where c is greater than zero. </li></ul><ul><li>C. | ax + b | = c , where c is less than zero. </li></ul><ul><li>D. |− ax + b| ≤ c , where c is less than zero. </li></ul>
    27. 27. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica <ul><li>4.The equation | ax + b | = c must have   ?   . </li></ul><ul><li>A. only 1 solution </li></ul><ul><li>B. 1 or 2 solutions </li></ul><ul><li>C. 0, 1, or 2 solutions </li></ul><ul><li>D. 0, 1 or an infinite number of solutions </li></ul>
    28. 28. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    29. 29. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    30. 30. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    31. 31. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    32. 32. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    33. 33. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    34. 34. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    35. 35. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    36. 36. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    37. 37. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    38. 38. Disequazioni lineari a una e a due incognite - Sistemi di disequazioni - Interpretazione grafica
    39. 39. a.s.2006/’07 2. indirizzo web: http://www.explorelearning.com Potrai approfondire i temi trattati : <ul><li>Utilizza i seguenti software : </li></ul><ul><li>Derive 5 – Cabrì geometre II </li></ul>GeoGebra <ul><li>Visita anche i seguenti siti </li></ul>1. Politecnico di Torino: http://www2.polito.it/didattica/polymath/htmlS/Studenti/Ricerche/

    ×