El momento de una fuerza aplicada en un punto
P con respecto de un punto O viene dado por el
producto vectorial del vector...
Cuando se consideran problemas mecánicos bidimensionales,
en los que todas las fuerzas y demás magnitudes vectoriales
son ...
REACCIONES EN APOYOS Y CONEXIONES
Reacciones en puntos de apoyo y conexiones para una
estructura tridimensionalEn una estr...
Torca
Upcoming SlideShare
Loading in...5
×

Torca

2,874
-1

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
2,874
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Torca

  1. 1. El momento de una fuerza aplicada en un punto P con respecto de un punto O viene dado por el producto vectorial del vector por el vector fuerza; esto es, Donde es el vector que va desde O a P. Por la propia definición del producto vectorial, el momento es un vector perpendicular al plano determinado por los vectores y . El término momento se aplica a otras magnitudes vectoriales como el momento lineal o cantidad de movimiento , y el momento angular o cinético, , definido como El momento de fuerza conduce a los conceptos de par, par de fuerzas, par motor, etc.
  2. 2. Cuando se consideran problemas mecánicos bidimensionales, en los que todas las fuerzas y demás magnitudes vectoriales son coplanarias, el cálculo de momentos se simplifica notablemente. Eso se debe a que los momentos serían perpendiculares al plano de coplanariedad y, por tanto, sumar momentos se reduciría a sumar tan sólo sus componentes perpendiculares al plano, que son magnitudes escalares. Si se considera una fuerza aplicada en un punto P del plano de trabajo y otro punto O sobre el mismo plano, el módulo del momento en O viene dado por: siendo F el módulo de la fuerza, b el brazo de momento, es decir, la distancia a la que se encuentra el punto O (en el que tomamos momento) de la recta de aplicación de la fuerza, y el suplementario del ángulo que forman los dos vectores. La dirección de un momento es paralela al eje de momento, el cual es perpendicular al plano que contiene la fuerza F, y por su brazo de momento d. Para establecer la dirección se utiliza la regla de la mano derecha.
  3. 3. REACCIONES EN APOYOS Y CONEXIONES Reacciones en puntos de apoyo y conexiones para una estructura tridimensionalEn una estructura tridimensional, las reacciones abarcan desde una sola fuerza dedirección conocida, que ejerce una superficie sin fricción, hasta un sistema fuerza-par ejercido por un apoyo fijo. Por tanto en los problemas que involucran elequilibrio de una estructura tridimensional pueden existir entre una y seisincógnitas asociadas con la reacción correspondiente a cada apoyo o conexión,una forma sencilla de determinar tanto el tipo de reacción correspondiente a unapoyo o conexión dado como el numero de incógnitas involucradas, consiste enestablecer cuales de los seis movimientos fundamentales.Por ejemplo los apoyos de la bola y cuenca o de rotula, las superficies sin ficción(lisas) y los cables solo impiden la traslación en una dirección y, por tanto, ejercenuna sola fuerza cuya línea de acción es conocida: así, cada uno de estos apoyosinvolucran una incógnita, la cual esta dada por la magnitud de la reacción. Losrodillos sobre superficies rugosas y las ruedas sobre rieles impiden la traslación endos direcciones; por consiguiente, las reacciones correspondientes consisten endos componentes de fuerza desconocidas. Las superficies rugosas en contactodirecto y las rotulas (bola y cuenca) impiden la traslación en tres direcciones; portanto estos apoyos involucran tres componentes de fuerza desconocidas
  1. ¿Le ha llamado la atención una diapositiva en particular?

    Recortar diapositivas es una manera útil de recopilar información importante para consultarla más tarde.

×