Your SlideShare is downloading. ×
0
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Naval Aviation Materials and Manufacturing Workshop:  Accelerating Technology Insertion
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Naval Aviation Materials and Manufacturing Workshop: Accelerating Technology Insertion

1,527

Published on

The purpose of the workshop was to identify the means of effecting a 30% reduction in cost and a 30% increase in throughput, by accelerating the insertion of extant and emerging Materials and …

The purpose of the workshop was to identify the means of effecting a 30% reduction in cost and a 30% increase in throughput, by accelerating the insertion of extant and emerging Materials and Manufacturing Technologies.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,527
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Naval Aviation Materials and Manufacturing Workshop: Accelerating Technology Insertion Air Vehicle Engineering Department Naval Air Systems Command William E. Frazier, Ph.D 30-31 Jan 2008 Southern Maryland Higher Education Center California MD
  • 2. Workshop Focus Effect a 30% reduction in cost and a 30% increase in throughput, by accelerating the insertion of extant and emerging Materials and Manufacturing Technologies. We tasked the workshop participants to assist us in developing a path to the answer.
  • 3. Outline <ul><li>Overview </li></ul><ul><ul><li>Organizers, Chairpersons, and Plenary Speakers </li></ul></ul><ul><ul><li>Concept of Operation </li></ul></ul><ul><ul><li>Participants </li></ul></ul><ul><li>Results </li></ul><ul><ul><li>Plenary: Technology Needs Summary </li></ul></ul><ul><ul><li>Green Manufacturing </li></ul></ul><ul><ul><li>Modeling and Simulation </li></ul></ul><ul><ul><li>Rapid Prototyping </li></ul></ul><ul><ul><li>Repair Technologies </li></ul></ul><ul><ul><li>Transition Hurdles </li></ul></ul>
  • 4. Workshop Organizers <ul><li>Organizers </li></ul><ul><li>ARL Penn State </li></ul><ul><ul><li>Dr. Tom Donnellan </li></ul></ul><ul><li>NAVAIR </li></ul><ul><ul><li>Dr. William E. Frazier </li></ul></ul><ul><ul><li>Dr. Eui Lee </li></ul></ul><ul><li>NAVMAR </li></ul><ul><ul><li>Mr. Irv Shaffer </li></ul></ul><ul><ul><li>Dr. Jeff Waldman </li></ul></ul><ul><li>Navy Metalworking Center(NMC) </li></ul><ul><ul><li>Ms. Denise Piastrelli </li></ul></ul><ul><ul><li>Dr. Daniel Winterscheidt </li></ul></ul><ul><li>Chairpersons </li></ul><ul><li>Rapid Prototyping </li></ul><ul><ul><li>George Blasiole, Navy Metalworking Center </li></ul></ul><ul><ul><li>Dr. Eui Lee, NAVAIR PAX Materials </li></ul></ul><ul><li>Repair Technologies </li></ul><ul><ul><li>Robert Kestler, NAVAIR CP 4.0T </li></ul></ul><ul><ul><li>Timothy D. Bair, ARL Penn State </li></ul></ul><ul><li>  Green Manufacturing </li></ul><ul><ul><li>Jose Jimenez, Ind. Compliance Dept. FRCSW </li></ul></ul><ul><ul><li>Michele Pok, NAVAIR PAX Materials </li></ul></ul><ul><ul><li>Ray Paulson, FRCSW </li></ul></ul><ul><li>  Modeling and Simulation </li></ul><ul><ul><li>Dr. Tom Donnellan, ARL Penn State </li></ul></ul><ul><ul><li>Mark Traband, ARL Penn State </li></ul></ul><ul><li>  Transition Hurdles </li></ul><ul><ul><li>Dr. Jeff Waldman, NAVMAR </li></ul></ul><ul><ul><li>Brian Riso, VLCOE CP </li></ul></ul>
  • 5. Plenary Speakers <ul><li>Mr. Richard Gilpin , NAVAIR AIR-4.3 Director, Air Vehicle Engineering Department </li></ul><ul><li>Mr. John Johns , Deputy Commander Fleet Readiness Centers </li></ul><ul><li>Mr. Thomas Laux , Program Executive Officer Air, ASW, Assault and Special Mission Programs </li></ul><ul><li>Mr. Todd Mellon , NAVAIR AIR-6.7 Director, Industrial & Logistics Maintenance Planning / Sustainment </li></ul><ul><li>Col. David Smith , Commanding Officer FRC East </li></ul><ul><li>Mr. Greg Kilchenstein , Senior Sustainment Technology Policy Analyst, OSD(AT&L) </li></ul><ul><li>Mr. John Carney , Director, Navy ManTech Program, Office of Naval Research </li></ul>
  • 6. Aligned S&T Approach <ul><li>Sea Power 21 </li></ul><ul><li>NAE S&T Strategic Plan (July 2006) </li></ul><ul><ul><li>Safety and Affordability Enablers (SAE) Capability Gap, STO-3 </li></ul></ul><ul><ul><li>Integrated Logistics Support (ILS) Capability Gap, STO-2 </li></ul></ul><ul><ul><li>Safety and Affordability Enablers (SAE) Capability Gap, STO-2 </li></ul></ul><ul><li>NAVAIR Vision </li></ul><ul><li>PEO(A) Rotorcraft Needs </li></ul><ul><ul><li>Corrosion, Erosion, and Environmental Degradation were identified as major O&S critical issues </li></ul></ul>
  • 7. Working Group CONOPS <ul><li>Five Discussion Groups </li></ul><ul><ul><li>Green Manufacturing </li></ul></ul><ul><ul><li>Modeling & Simulation </li></ul></ul><ul><ul><li>Rapid Prototyping </li></ul></ul><ul><ul><li>Repair Technologies </li></ul></ul><ul><ul><li>Transition Hurdles </li></ul></ul><ul><li>Led by Facilitator </li></ul><ul><ul><li>Selected audience (~20) </li></ul></ul><ul><ul><li>Guided the discussion </li></ul></ul>GOAL TECHNICAL OBJECTIVES TECHNICAL CHALLENGES RESEARCH APPROACHES GOTChA Process Navy Defined Navy Defined, Workshop Validated Workshop Developed <ul><li>Prioritized list of technologies </li></ul><ul><li>Viable approaches listed and prioritized for the near, mid, and far term. </li></ul><ul><ul><li>< 5yrs; 5-10 yrs; > 10 yrs </li></ul></ul>
  • 8. Product Generation Plenary Working Groups Idea Generation & Prioritization Post Workshop Analysis & Synthesis Technical Needs, Challenges, and Approaches
  • 9. <ul><li>Group output was consensus of experts </li></ul><ul><ul><li>Industry, Government, Academia </li></ul></ul><ul><li>Validated list of technical objectives </li></ul><ul><li>For each Objective, specific challenges were defined </li></ul><ul><li>For each challenge, potential technology approaches were proposed </li></ul>Working Group Outputs
  • 10. Attendance <ul><li>Engaged discussion with 97 technical experts </li></ul>Government Industry Industry Academia <ul><li>Air Force </li></ul><ul><li>ARMY </li></ul><ul><li>DARPA </li></ul><ul><li>JSF </li></ul><ul><li>NIST </li></ul><ul><li>OSD </li></ul><ul><li>ONR </li></ul><ul><li>PEO(A) </li></ul><ul><li>NAVAIR </li></ul><ul><li>FRC </li></ul><ul><li>3M Aerospace </li></ul><ul><li>ALCOA Defense </li></ul><ul><li>Battelle Memorial Institute </li></ul><ul><li>Bell Helicopter </li></ul><ul><li>Boeing </li></ul><ul><li>Carpenter Technology </li></ul><ul><li>CTC </li></ul><ul><li>Dynamics Research Corp </li></ul><ul><li>GE Aviation </li></ul><ul><li>JENTEK </li></ul><ul><li>KBSI </li></ul><ul><li>Lockheed Martin </li></ul><ul><li>METBLAST </li></ul><ul><li>NanoTechLabs </li></ul><ul><li>NAVMAR </li></ul><ul><li>Navy Metalworking Center </li></ul><ul><li>Northrop Grumman </li></ul><ul><li>Spatial Integrated Systems </li></ul><ul><li>Sikorsky </li></ul><ul><li>Stratasys </li></ul><ul><li>TRI </li></ul><ul><li>Maven Group </li></ul><ul><li>Connecticut Center for Advanced Technology </li></ul><ul><li>Craven Community College </li></ul><ul><li>Georgia Institute of Technology </li></ul><ul><li>Institute for Maintenance Science & Technology , NC State Univ. </li></ul><ul><li>North Carolina State University </li></ul><ul><li>Penn State University </li></ul><ul><li>Purdue University </li></ul><ul><li>University of Virginia </li></ul>
  • 11. Plenary Synopsis ( Technology Needs) <ul><li>Diagnostics and Testing </li></ul><ul><ul><li>Advanced NDI and automated testing </li></ul></ul><ul><li>Environmentally Sage Designs / Processes </li></ul><ul><ul><li>Replacement for cadmium and chromium plating processes </li></ul></ul><ul><ul><li>Alternate primer coatings eliminating hexavalent chrome . </li></ul></ul><ul><li>Reverse Engineering </li></ul><ul><ul><li>Ability to establish technical data package and replacement part in the absence of technical data </li></ul></ul><ul><ul><li>Convert legacy 2D data to 3D data for computer-aided manufacturing. </li></ul></ul><ul><li>Predictive Maintenance </li></ul><ul><ul><li>Real-time infrastructure and technology to support knowledge-based maintenance decisions. </li></ul></ul><ul><li>Advanced Coatings </li></ul><ul><ul><li>Resist corrosion & erosion degradation. </li></ul></ul><ul><li>Knowledge-based parts location capability </li></ul><ul><ul><li>Ability to actively locate any asset at any time </li></ul></ul><ul><li>Distance Support </li></ul><ul><ul><li>High-Speed Voice Over Internet Protocol and high-resolution video. </li></ul></ul><ul><li>Lightweight materials </li></ul><ul><li>Mobile forward-based maintenance </li></ul><ul><li>Aircraft Battle Damage Repair (ABDR) – Key Enabler </li></ul><ul><ul><li>Develop portable, battle damage repair and rapid manufacturing technologies. </li></ul></ul><ul><ul><li>The ability to repair battle damage with minimal external support </li></ul></ul><ul><ul><li>ABDR manuals </li></ul></ul><ul><li>Readiness Modeling </li></ul><ul><ul><li>Tools for reliability, sparing, and total ownership cost </li></ul></ul><ul><ul><li>Cost Wise Readiness Integrated Improvement Program (CWRIIP ) </li></ul></ul><ul><ul><li>Evaluating Advanced Total Life-Cycle Assessment Software Tool (ATLCAST) </li></ul></ul>
  • 12. Plenary Synopsis ( Technology Needs) <ul><li>Composite Technologies </li></ul><ul><ul><li>Improved characterization in dynamic environment </li></ul></ul><ul><ul><li>Enhance producibility and reduce variability </li></ul></ul><ul><ul><li>Critically examine composite qualification requirements for cost-reduction opportunities. </li></ul></ul><ul><ul><li>Articulate ROI based upon mission performance enhancements (due to weight reductions). </li></ul></ul><ul><li>Rapid Prototyping </li></ul><ul><ul><li>Blade Repair </li></ul></ul><ul><li>Repair Technologies </li></ul><ul><ul><li>Corrosion Repair </li></ul></ul><ul><ul><li>HVOF WCCo </li></ul></ul><ul><ul><li>Composite Repair </li></ul></ul><ul><li>Corrosion </li></ul><ul><ul><li>Design in corrosion resistance </li></ul></ul><ul><ul><li>Corrosion smart designs </li></ul></ul><ul><li>Manufacturing </li></ul><ul><ul><li>High Speed Machining of titanium </li></ul></ul><ul><ul><li>Gears </li></ul></ul><ul><ul><li>Design with repair in mind. </li></ul></ul><ul><li>Common Themes </li></ul><ul><ul><li>Microstructural processing & modeling </li></ul></ul><ul><ul><li>Modeling & Simulation </li></ul></ul><ul><ul><li>Computational methods </li></ul></ul><ul><li>Improved Structural fatigue analysis techniques </li></ul><ul><li>Maintenance repair data (Material Condition Assessment) </li></ul><ul><li>Depot Maintenance (Schedule and Cost) </li></ul>
  • 13. Green Manufacturing <ul><li>Goal: Effect a 30% reduction in cost and 30% increase in through put, by accelerating the insertion of extant and emerging Environmentally Friendly Manufacturing Technologies </li></ul><ul><li>Objectives: </li></ul><ul><li>Increase the paint application rate 50% over the current baseline and reduce the Personal Protection Equipment (PPE) costs 30% or more. </li></ul><ul><li>Increase the rate of paint removal 25% over the existing baseline rate. Lower the solid waste (blast media) and industrial waste (chemical stripper rinse water) costs associated with Navy aircraft de-painting 50% </li></ul><ul><li>Reduce the defects 95% for metal finishing applications (e.g., hard chrome plating etc.) and reduce the Personal Protection Equipment (PPE) costs 30% or more. </li></ul>
  • 14. Green Manufacturing <ul><li>Non-Chrome Primer (5-10 yrs) </li></ul><ul><ul><li>Hexavalent chrome is toxic and carcinogenic </li></ul></ul><ul><ul><li>Non-chrome primers have not demonstrated acceptable corrosion results </li></ul></ul><ul><li>Environmentally Friendly Chemical Stripper (5-10 yrs) </li></ul><ul><ul><li>Existing environmentally friendly stripper systems (benzyl alcohol based) work too slowly. </li></ul></ul><ul><ul><li>Other strippers cause corrosion. </li></ul></ul><ul><li>Rapid cure polyurethane (5-10 yrs) </li></ul><ul><ul><li>Top coats can require up to 7 days to cure. </li></ul></ul><ul><ul><li>Pot life is too short. </li></ul></ul><ul><li>Powder Coating & De-coating Process (1-5 yrs) </li></ul><ul><ul><li>Coatings must be applied at high temperatures (350-400F) which can cause damage to the substrate. </li></ul></ul><ul><ul><li>Coatings are tenacious and are not easily removable with chemical stripper alone. </li></ul></ul><ul><li>Chrome Plating Alternatives (1-5yrs) </li></ul><ul><ul><li>HVOF </li></ul></ul>
  • 15. Green Manufacturing Needs (Less than 5 years) <ul><li>Can be done immediately </li></ul><ul><ul><li>Training – Video depicting proper painting methods </li></ul></ul><ul><ul><li>Implementation of Non Cr Conversion Coating </li></ul></ul><ul><ul><li>Recycle Waste Water </li></ul></ul><ul><li>Could be implemented in less that 5 Years </li></ul><ul><ul><li>Painting technology </li></ul></ul><ul><ul><ul><li>Plural Component Paint System </li></ul></ul></ul><ul><ul><ul><li>Facility Needs: Reduce Make-up Air from 100% to 20% </li></ul></ul></ul><ul><ul><li>De-painting Technologies </li></ul></ul><ul><ul><ul><li>Bio Blast, Barrier Coating, Powder Coat De-painting, Zirconium Blast </li></ul></ul></ul><ul><ul><li>Chrome Plating Technology and Alternatives </li></ul></ul><ul><ul><ul><li>Conforming Anodes </li></ul></ul></ul><ul><ul><ul><li>Process Controller </li></ul></ul></ul><ul><ul><ul><li>Insulate and Cover All Plating Rinse Tanks </li></ul></ul></ul><ul><ul><ul><li>Separate Dry On-Off Air Controls for Each Tank </li></ul></ul></ul>
  • 16. Modeling and Simulation <ul><li>Goal: Effect a 30% reduction in cost and 30% increase in through put, by accelerating the insertion of extant and emerging Modeling and Simulation Technologies </li></ul><ul><li>Objectives: </li></ul><ul><li>Reduce the time and cost associated with developing work content/profile estimates for manufacturing and repair processes by 75% while increasing the accuracy of initial estimates by 25% </li></ul><ul><li>Reduce production line work in process (WIP) by 50% and increase throughput by 25% over the baseline process. </li></ul><ul><li>Reduce the time required to plan and implement proposed changes for manufacturing, repair, overhaul, or warehousing by 50%, with increased confidence. </li></ul>
  • 17. Modeling and Simulation <ul><li>Generation of 3D models and associated meta-data from paper & raster legacy designs. (10 yrs) </li></ul><ul><li>Automatic generation of simulation models from standard data formats (5-10 yrs.) is needed to ensure models maintain currency with changing product configurations </li></ul><ul><ul><li>No standard input format is available for discrete event simulation models. Such formats are needed to create and update models. </li></ul></ul><ul><ul><li>Develop discrete event modeling tools that can take this standard input and automatically generate functional, accurate models form the data. </li></ul></ul><ul><li>Develop methods to assess the impact of platform condition & history on repair work content. (5-10 yrs.) </li></ul><ul><ul><li>The work content required for a component, system, or end item is highly dependent upon its condition upon induction. The challenge is to develop tools to better capture the operating history of an item. </li></ul></ul>
  • 18. Modeling and Simulation <ul><li>Repair and Overhaul engineering information must be consistent and adequate in level of detail. </li></ul><ul><ul><li>As process capabilities change, semi-automatically regenerate repair instructions (5-10 yrs) </li></ul></ul><ul><ul><li>Create an interactive, collaborative environment between engineering and manufacturing / planning (5yrs) </li></ul></ul><ul><li>Affordable, easy to use, maintainable tools for developing on-demand, richer work instruction content. (5 yrs) </li></ul><ul><li>Tools to analyze existing & historical usage data and lead time data and use results to improve part availability. (5 yrs) </li></ul><ul><li>Develop data mining & statistical analysis tools for creation of process models.(5 yrs) </li></ul>
  • 19. Rapid Prototyping Technology <ul><li>Goal: Effect a 30% reduction in cost and 30% increase in through put, by accelerating the insertion of extant and emerging Rapid Prototyping </li></ul><ul><li>Objectives: </li></ul><ul><li>Cut procurement time (from need to part in inventory) by 50% with no sacrifice in geometry accuracy or properties for fatigue and non-fatigue. (Produce parts with least process steps and human intervention from &quot;art to part.&quot; Fully integrate and automate RP processes). </li></ul><ul><li>Identify 5 components for repair using material additive processing that will reduce replacement cost by 60% </li></ul><ul><li>Provide for the production of aerospace components using Rapid Prototyping processes through the development of standard/general qualification procedures for all aerospace structural and propulsion components that are candidates for manufacture by RP processes. </li></ul>
  • 20. Rapid Prototyping Technology <ul><li>Direct Digital Manufacturing (DDM) </li></ul><ul><li>Identified as the most promising technology to achieve cost and time savings. </li></ul><ul><li>There are a variety of DDM processes including Selected Laser Sintering (SLS), Laser Engineered Net Shapes (LENS), Solid Freeform Fabrication (SFF), and Electron Beam Melting (EBM). </li></ul><ul><li>Permits components to be fabricated directly from digital media, e.g., CAD/CAM files. </li></ul><ul><li>Two DDM focus areas were identified </li></ul><ul><li>Direct Digital Manufacturing (DDM) process of Non-metallic Component Manufacture </li></ul><ul><ul><li>Low quantity non-metallic components that are non-stock, non inventory parts such as seals and gaskets or special purpose parts made of plastics or elastomers </li></ul></ul><ul><li>Direct Digital Manufacturing (DDM) process of Metallic Components </li></ul><ul><ul><li>Applications include low volume, high value parts; components that are no longer manufactured, repaired and refurbished; and new design prototypes. </li></ul></ul><ul><li>Systemic Technology Needs </li></ul><ul><li>DDM modeling and simulation to relate processing to microstructure to properties. </li></ul><ul><li>Non-destructive Evaluation methods and tools, e.g., microporosity </li></ul><ul><li>A DDM Qualification and Certification Methodology which eliminates the need for component by component certification. </li></ul><ul><li>Improved equipment reliability and reproducibility </li></ul>
  • 21. Rapid Prototyping Technology Needs <ul><li>DDM of Metallic Materials </li></ul><ul><ul><li>Gear “teeth” refurbishment (5-10 yrs) </li></ul></ul><ul><ul><li>Single crystal blade repair (5-10 yrs) </li></ul></ul><ul><ul><li>Blade and vane length recovery (0-5 yrs) </li></ul></ul><ul><ul><li>Housing repair. (0-5 yrs) </li></ul></ul><ul><li>DDM of Non-metallic components </li></ul><ul><ul><li>Gaskets and Polymeric seals (0-5 yrs) </li></ul></ul><ul><ul><li>Carbon fiber reinforced (0-5 yrs) </li></ul></ul><ul><li>Standard Engineering Process Specification and Joint Qualification Standards (5-10 yrs) </li></ul><ul><li>Equipment Reliability and Repeatability (0-5 yrs) </li></ul><ul><li>NDE (0-5 yrs) </li></ul><ul><ul><li>micro-porosity, acceptance criteria </li></ul></ul>
  • 22. Repair Technology <ul><li>Goal: Effect a 30% reduction in cost and 30% increase in throughput, by accelerating the insertion of extant and emerging Repair Technologies </li></ul><ul><li>Objectives: </li></ul><ul><li>Implement structural repair technologies that will increase throughput by 100% </li></ul><ul><li>Implement technology to improve / achieve material state awareness at an annual cost savings of 50% </li></ul><ul><li>Implement corrosion control technologies that will double the time between required maintenance intervals and reduce maintenance cost by 50% </li></ul>
  • 23. Repair Technology <ul><li>Additive Material Restoration (10 yrs) </li></ul><ul><ul><li>Use of DDM and other techniques to repair and restore structural components </li></ul></ul><ul><li>Damage assessment (10 yrs) </li></ul><ul><ul><li>Smart coatings for corrosion and fatigue damage (10 yrs) </li></ul></ul><ul><ul><li>NDI technologies for inspection through coatings and/or multiple structural layers (5-10 yrs) </li></ul></ul><ul><li>State of health determination (10 yrs) </li></ul><ul><ul><li>Modeling and data interpretation / damage assessment </li></ul></ul><ul><ul><li>Condition based maintenance (CBM) technologies </li></ul></ul><ul><ul><li>Wide area sensing for structural health determination. </li></ul></ul><ul><li>Alternative Coating Systems (5-10 yrs) </li></ul><ul><ul><li>HVOF, Cold Spray, Cladding Alternatives. </li></ul></ul>
  • 24. Transition Hurdles <ul><li>Goal: Effect a 30% reduction in cost and a 30% increase in throughput by significant decreases in the non-technical hurdles to technology insertion </li></ul><ul><li>Objectives: </li></ul><ul><li>Improve processes that could increase technology insertion by 50%. </li></ul><ul><li>Assure that 100% of the efforts needed to insert technologies are properly resourced </li></ul><ul><li>Reduce the time associated with the qualification, certification and insertion of new technologies by 80%. </li></ul>
  • 25. Transition Hurdles <ul><li>There is a lack of visibility into the current processes, policies, and funding mechanisms being used to develop, qualify, and implement new cost saving maintenance technologies. </li></ul><ul><ul><li>Establish an NAE policy and integrated NAE process for technology insertion into the maintenance environment. </li></ul></ul><ul><ul><li>Establish and properly resource a technology transition program manager. </li></ul></ul><ul><li>The process of qualifying and certifying new technologies is unclear, cumbersome, and costly. </li></ul><ul><ul><li>A clearly defined processes are needed in which certification requirements are fully developed up-front. </li></ul></ul>
  • 26. Transition Hurdles (Individual Working Groups Input) <ul><li>Green Manufacturing </li></ul><ul><li>Lack of funding and funding gaps related to a) funding cycle, b) color of funding and c) CIP threshold </li></ul><ul><li>Engineering Approval Process </li></ul><ul><li>Technical Manual Changes </li></ul><ul><li>Environmental and Safety Laws and Regulations </li></ul><ul><li>Public Affairs (public perception) </li></ul><ul><li>Facility Logistics (infrastructure availability)/Equipment Readiness </li></ul><ul><li>Training (knowledge, skills and abilities) </li></ul><ul><li>Modeling and Simulation </li></ul><ul><li>Lack of training, time, and funding </li></ul><ul><li>Lack of engineering talent with industrial and manufacturing experience. Engineer are too removed from the realities of depot and manufacturing environment. </li></ul><ul><li>Lack of cost-based data and metrics supporting M&S implementation </li></ul><ul><li>Long development times and extended acquisition cycle </li></ul><ul><li>DMS obsolescence </li></ul>
  • 27. Transition Hurdles (Individual Working Groups Input) <ul><li>Rapid Prototyping </li></ul><ul><li>The lack of an effective rapid prototyping qualification process. </li></ul><ul><li>The price and availability for single part replacements related to the economics of material quantities, tooling, set up, and production scheduling. </li></ul><ul><li>The cost and time associated with multiple sourced contracting for scanning, modeling, and manufacture. </li></ul><ul><li>Availability of OEM data and the need to protect proprietary data </li></ul><ul><li>Vendor certification </li></ul><ul><li>Technical data exchange </li></ul><ul><li>Repair Technologies </li></ul><ul><li>Resources for equipment and equipment installation and facility modifications </li></ul><ul><li>Training (Fleet & Depot personnel) </li></ul><ul><li>Technical Instruction Changes </li></ul><ul><li>Intransient internal culture (We’ve been doing this for years…) </li></ul><ul><li>Logistics of implementation (Configuration Control of affected parts/systems) </li></ul><ul><li>OEM resistance and impediments </li></ul><ul><li>Performance based logistics contracts </li></ul><ul><li>Information Technology not allowing </li></ul>
  • 28. Actions and Recommendations <ul><li>Initiate two AirSpeed Projects based on issues identified in the Non-technical Transition Hurdles Working Group </li></ul><ul><ul><li>Technology insertion project should be jointly sponsored by the CTO and FRC. </li></ul></ul><ul><ul><li>The Qualification & Certification project should be sponsored by the CTO with full participation by 4.3 and 4.4. </li></ul></ul><ul><li>Focus Command resources on the high payoff technologies identified in the working groups, for example </li></ul><ul><ul><li>Direct Digital Manufacturing </li></ul></ul><ul><ul><li>Condition Based Maintenance (CBM) and damage assessment technologies </li></ul></ul><ul><ul><li>Non-Chrome primers, environmentally friendly strippers, and rapid cure polyurethane paints. </li></ul></ul><ul><ul><li>3D model generation from legacy data; methods to assess work content based upon platform condition and history </li></ul></ul><ul><ul><li>Gear tooth repair; single crystal blade repair; transmission housing repair; blade and vein repair. </li></ul></ul>
  • 29. Path Forward <ul><li>Continue post workshop analysis </li></ul><ul><li>Brief Stakeholders </li></ul><ul><li>Write and disseminate report </li></ul><ul><li>Advocate AirSpeed Projects for Non-technical Transition Hurdles </li></ul><ul><li>Pursue sponsorship for high payoff technologies. </li></ul>

×