Approccio sistemico per la sicurezza
delle gallerie in caso di incendio
e problemi strutturali specifici
Prof. Dr. Ing. Fr...
www.francobontempi.org

Str
o N
GER

2
Scopo della presentazione
•

Far vedere gli aspetti piu’ generali della
progettazione strutturale antincendio:
Complessit...
www.francobontempi.org

Str
o N
GER

1
OGGETTO
Caratteristiche delle gallerie
Geometrie
Impianti
4
www.francobontempi.org

Str
o N
GER

GEOMETRIE

5
www.francobontempi.org

Str
o N
GER

Tipo A - autostrade

6
www.francobontempi.org

Str
o N
GER

7
www.francobontempi.org

Str
o N
GER

Tipo B – extraurbane principali

8
Str
o N
GER
www.francobontempi.org

Tipo C – extraurbane secondarie

9
www.francobontempi.org

Str
o N
GER

10
www.francobontempi.org

Str
o N
GER

11
www.francobontempi.org

Str
o N
GER

12
www.francobontempi.org

Str
o N
GER

13
www.francobontempi.org

Str
o N
GER

14
www.francobontempi.org

Str
o N
GER

15
www.francobontempi.org

Str
o N
GER

16
www.francobontempi.org

Str
o N
GER

17
www.francobontempi.org

Str
o N
GER

Sistema vs Struttura

Opera
Viva

Opera
Morta
18
www.francobontempi.org

Str
o N
GER

IMPIANTI VENTILAZIONE

19
www.francobontempi.org

Str
o N
GER

20
www.francobontempi.org

Str
o N
GER

Piston effect

• Is the result of natural induced draft caused by
free-flowing traffi...
www.francobontempi.org

Str
o N
GER

Mechanical ventilation

• “forced” ventilation is required where piston
effect is not...
Str
o N
GER
www.francobontempi.org

TUNNEL VENTILATION SYSTEMS

• Road Tunnel Ventilation Systems have two modes of
operat...
www.francobontempi.org

Str
o N
GER

Longitudinal ventilation system

• employs jet fans suspended under tunnel roof; in
n...
www.francobontempi.org

Str
o N
GER

25
www.francobontempi.org

Str
o N
GER

26
Str
o N
GER
www.francobontempi.org

Semi-transverse ventilation system

• employs ceiling plenum connected to central fan
...
www.francobontempi.org

Str
o N
GER

Transverse ventilation system

• employs double supply and exhaust plenums
connected ...
www.francobontempi.org

Str
o N
GER

29
www.francobontempi.org

Str
o N
GER

30
www.francobontempi.org

Str
o N
GER

31
www.francobontempi.org

Str
o N
GER

Attachments

• Dispersion stack and fan room combined with
longitudinal ventilation: ...
www.francobontempi.org

Str
o N
GER

33
www.francobontempi.org

Str
o N
GER

Ventilation unit
Air extraction

Ventilation unit
Supply of fresh air

34
www.francobontempi.org

Str
o N
GER

35
www.francobontempi.org

Str
o N
GER

2
COMPLESSITA’
Approccio prestazionale
Modellazione
Sicurezza
36
System Complexity (Perrow)

couplings

TIGHT

LINEAR interactions NONLINEAR

LOOSE

www.francobontempi.org

Str
o N
GER

3...
www.francobontempi.org

Str
o N
GER

APPROCCIO PRESTAZIONALE

38
www.francobontempi.org

Str
o N
GER

39
www.francobontempi.org

Str
o N
GER

Prescrittivo (1)
APPROCCIO
PRESCRITTIVO

APPROCCIO
PRESTAZIONALE

1) BASI DEL PROGETT...
Str
o N
GER
www.francobontempi.org

Prescrittivo (2)
prescrittivo
Elementi Costituenti
Elementi Costituenti
Elementi Costi...
www.francobontempi.org

Str
o N
GER

Prestazionale (1)
APPROCCIO
PRESCRITTIVO

APPROCCIO
PRESTAZIONALE

1) BASI DEL PROGET...
Str
o N
GER
www.francobontempi.org

Prestazionale (2)
prescrittivo
Elementi Costituenti
Elementi Costituenti
Elementi Cost...
www.francobontempi.org

Str
o N
GER

START

DEFINIZIONE E DISANIMA
DEGLI OBIETTIVI

INDIVIDUAZIONE DELLE
SOLUZIONI ATTE A
...
www.francobontempi.org

Str
o N
GER

45
www.francobontempi.org

Str
o N
GER

46
www.francobontempi.org

Str
o N
GER
livello
1

OBIETTIVI

livello
2

ESPLICITAZIONE DEGLI
OBIETTIVI ATTRAVERSO
L'INDIVIDUA...
livello
1

OBIETTIVI

livello
2

ESPLICITAZIONE DEGLI
OBIETTIVI ATTRAVERSO
L'INDIVIDUAZIONE DI n
PRESTAZIONI;
ordinatament...
www.francobontempi.org

Str
o N
GER

MODELLAZIONE

49
www.francobontempi.org

Str
o N
GER

50
www.francobontempi.org

Analysis Strategy #1:
Sensitivity governance of priorities

Str
o N
GER

51
www.francobontempi.org

Analysis Strategy #2:
Bounding behavior governance

Str
o N
GER

52
www.francobontempi.org

Analysis Strategy #3:
Redundancy Governance

Str
o N
GER

53
www.francobontempi.org

Str
o N
GER

NUMERICAL
MODELING

54
www.francobontempi.org

Factors for Coupling

Str
o N
GER

time
tK

TERMAL
STATE
(Temperature Field
and Termic Related
Pro...
time
tK

time
tK

time
tK

time
tK

TERMAL
STATE
(Temperature Field
and Termic Related
Properties)

TERMAL
STATE
(Temperat...
time
tK

time
tK

time
tK

time
tK

TERMAL
STATE
(Temperature Field
and Termic Related
Properties)

TERMAL
STATE
(Temperat...
time
tK

time
tK

time
tK

time
tK

TERMAL
STATE
(Temperature Field
and Termic Related
Properties)

TERMAL
STATE
(Temperat...
time
tK

time
tK

time
tK

time
tK

TERMAL
STATE
(Temperature Field
and Termic Related
Properties)

TERMAL
STATE
(Temperat...
www.francobontempi.org

Str
o N
GER

60
www.francobontempi.org

Str
o N
GER

61
www.francobontempi.org

Str
o N
GER

62
www.francobontempi.org

Str
o N
GER

63
www.francobontempi.org

Str
o N
GER

SICUREZZA

64
RELIABILITY
A way to assess
the dependability of a system

ATTRIBUTES

AVAILABILITY
MAINTAINABILITY
SAFETY

the trustworth...
RELIABILITY

www.francobontempi.org

Structural Robustness (1)

Str
o N
GER

AVAILABILITY

ATTRIBUTE
S

MAINTAINABILITY
SA...
• Capacity of a construction to show a
regular decrease of its structural quality
due to negative causes. It implies:
a) s...
1st level:
Material
Point

3rd level:
Structural
Element

4th level:
Structural
System

2nd level:
Element
Section

Struct...
STRUCTURE
& LOADS

Collapse
Mechanism

NO SWAY

SWAY

“IMPLOSION”
OF THE
STRUCTURE

www.francobontempi.org

Bad vs Good Co...
www.francobontempi.org

Str
o N
GER

Design Strategy #1: Continuity

70
www.francobontempi.org

Str
o N
GER

Design Strategy #2: Segmentation

71
www.francobontempi.org

Str
o N
GER

Esempio di valutazione
di roubustezza strutturale

72
www.francobontempi.org

Str
o N
GER

Esempio: edificio alto

73
73
www.francobontempi.org

Str
o N
GER

Analisi di un componente tipico

D0

74
Str
o N
GER
www.francobontempi.org

Scenari (1-2)

D1

D2

75
Str
o N
GER
www.francobontempi.org

Scenari (3-4)

D3

D4

76
www.francobontempi.org

Str
o N
GER

Modalità di collasso (1-2)

D1

D2

77
www.francobontempi.org

Str
o N
GER

Modalità di collasso (3-4)

D3

D4

78
Str
o N
GER
www.francobontempi.org

Sintesi dei risultati: elemento critico

0

4

Lo scenario D4
è quello più cattivo:
l’...
www.francobontempi.org

Modellazione edificio alto

Str
o N
GER

80
www.francobontempi.org

Str
o N
GER

81
www.francobontempi.org

Str
o N
GER

Scenari di danneggiamento

Scenario 1

Scenario 2

Scenario 3

Scenario 4

(1 asta
el...
www.francobontempi.org

Str
o N
GER

Collasso secondo scenario 1

83
www.francobontempi.org

Str
o N
GER

Collasso secondo scenario 2

84
www.francobontempi.org

Str
o N
GER

Collasso secondo scenario 3

85
www.francobontempi.org

Str
o N
GER

Collasso secondo scenario 4

86
www.francobontempi.org

Str
o N
GER

Sintesi dei risultati
Moltiplicatore Ultimo e sua variazione

u
4,50
4,00
3,50
3,00
...
www.francobontempi.org

Str
o N
GER

3
AZIONE
Natura dell’azione incendio
Carattere accidentale
Carattere estensivo
Caratt...
www.francobontempi.org

Str
o N
GER

Aspetti caratteristici dell’incendio

• Carattere estensivo
(diffusione nello spazio)...
www.francobontempi.org

Str
o N
GER

Carattere intensivo

90
ISO 13387: Example of Design Fire

www.francobontempi.org

Str
o N
GER

91
Str
o N
GER
www.francobontempi.org

Andamento nel tempo potenza termica

92
www.francobontempi.org

Str
o N
GER

93
Strategie
flashover

Temperatura T(t)

www.francobontempi.org

Str
o N
GER

STRATEGIE
ATTIVE
(approccio
sistemico)

STRATE...
www.francobontempi.org

Str
o N
GER

Fire Safety Strategies
prevention

protection
active






Limit ignition
sources...
Str
o N
GER

1

prevention
N

2

3

www.francobontempi.org

Fire Safety Strategies
4

doesn’t
trigger

Y

Y

extinguishes
...
www.francobontempi.org

Str
o N
GER

97
www.francobontempi.org

Str
o N
GER

98
www.francobontempi.org

Str
o N
GER

SnakeFighter

99
www.francobontempi.org

Str
o N
GER

Carattere estensivo

100
www.francobontempi.org

Str
o N
GER

The Great Fire of Chicago, Oct. 7-10, 1871

101
www.francobontempi.org

Str
o N
GER

102
www.francobontempi.org

Str
o N
GER

103
www.francobontempi.org

Str
o N
GER

104
www.francobontempi.org

Str
o N
GER

105
www.francobontempi.org

Str
o N
GER

Windsor Hotel Madrid

106
www.francobontempi.org

Str
o N
GER

Natura accidentale

107
www.francobontempi.org

Situazioni HPLC

Str
o N
GER

High Probability Low Consequences
108
www.francobontempi.org

Str
o N
GER

LPHC events

Low Probability High Consequences
109
HPLC vs LPHC events
HPLC
LPHC
High Probability Low Probability
Low
High
Consequences Consequences
release of energy
number...
www.francobontempi.org

Str
o N
GER

Impostazione
del problema:
DETERMINISTICA

STOCASTICA

Approcci di analisi
HPLC

LPHC...
www.francobontempi.org

Str
o N
GER

Italian Code for Constructions
D.M. 14 settembre 2005
CAPITOLO 2:
SICUREZZA
E
PRESTAZ...
www.francobontempi.org

Str
o N
GER

Scenari (D.M. 14 settembre 2005)
Il Progettista, a seguito della classificazione e de...
Str
o N
GER

Establish
performance
requirements

www.francobontempi.org

Determine geometry,
construction and
use of the b...
www.francobontempi.org

Str
o N
GER

115
www.francobontempi.org

Str
o N
GER

4
SVILUPPO
Dinamica degli incendi in galleria
Effetti della ventilazione

116
www.francobontempi.org

Str
o N
GER

FIRE DYNAMICS IN TUNNELS

117
Tunnel Fires vs Compartment Fires (0)

118
www.francobontempi.org

Str
o N
GER

Tunnel Fires Progression (1)

119
www.francobontempi.org

Str
o N
GER

120
www.francobontempi.org

Str
o N
GER

121
www.francobontempi.org

Str
o N
GER

Tunnel Fires Progression (2)

122
www.francobontempi.org

Str
o N
GER

Effects of ventilation

123
www.francobontempi.org

Str
o N
GER

Temperature development

124
www.francobontempi.org

Str
o N
GER

Smoke development

• A smoke layer may be created in tunnels at the early stages
of a...
www.francobontempi.org

Str
o N
GER

Backlayering

126
www.francobontempi.org

Str
o N
GER

127
www.francobontempi.org

Str
o N
GER

Maximum gas temperatures in the ceiling area of
the tunnel during tests with road veh...
www.francobontempi.org

Str
o N
GER

Maximum gas temperatures in the ceiling area of
the tunnel during tests with road veh...
www.francobontempi.org

Str
o N
GER

Maximum gas temperatures in the cross section
of the tunnel during tests with road ve...
www.francobontempi.org

Str
o N
GER

EMERGENCY VENTILATION

131
www.francobontempi.org

Str
o N
GER

Smoke stratification

132
www.francobontempi.org

Str
o N
GER

Natural smoke venting

• It can be sufficient in short, level tunnels
where smoke str...
www.francobontempi.org

Str
o N
GER

Smoke filling long tunnel

134
www.francobontempi.org

Str
o N
GER

Emergency ventilation with
longitudinal system

• It can be employed in unidirectiona...
www.francobontempi.org

Str
o N
GER

136
www.francobontempi.org

Str
o N
GER

137
www.francobontempi.org

Str
o N
GER

k size factor for HGV fire

138
www.francobontempi.org

Str
o N
GER

k size factor for small pool fire

139
www.francobontempi.org

Str
o N
GER

Emergency ventilation with semitransverse “point extraction” system

• Smoke is mecha...
www.francobontempi.org

Str
o N
GER

141
www.francobontempi.org

Str
o N
GER

Observation: goal

• The purpose of controlling the spread of smoke
is to keep people...
www.francobontempi.org

Str
o N
GER

Observation: longitudinal velocity

• With practically zero longitudinal air velocity...
www.francobontempi.org

Str
o N
GER

Observations: turbulence

• With an air velocity of around 2 m/s, most of the
smoke o...
www.francobontempi.org

Str
o N
GER

Observation: fresh air

• In a transverse ventilation system, the fresh air
jets ente...
www.francobontempi.org

Str
o N
GER

Observation: smoke extraction

• In reversible semi-transverse ventilation with the
d...
www.francobontempi.org

Str
o N
GER

Observation: traffic conditions

• For a tunnel with one-way traffic, designed for
qu...
www.francobontempi.org

Strategies

Str
o N
GER

148
www.francobontempi.org

Str
o N
GER

Smoke extraction

• Continuous extraction into a return air duct is
needed to remove ...
Tunnel with a single-point
extraction system

The usual way to control the longitudinal velocity is to provide several
in...
www.francobontempi.org

Str
o N
GER

FIRE MODELING

151
www.francobontempi.org

Str
o N
GER

152
www.francobontempi.org

Str
o N
GER

Levels

153
www.francobontempi.org

Str
o N
GER

1D

154
www.francobontempi.org

Str
o N
GER

1D

155
www.francobontempi.org

Str
o N
GER

2D (zone model)

156
www.francobontempi.org

Str
o N
GER

2D (zone model)

157
www.francobontempi.org

Str
o N
GER

158
3D (ventilation)

www.francobontempi.org

FDS Simulation

Str
o N
GER

159
3D (fire)

www.francobontempi.org

FDS Simulation

Str
o N
GER

160
www.francobontempi.org

Str
o N
GER

3D (traffic)

161
www.francobontempi.org

Str
o N
GER

162
www.francobontempi.org

Str
o N
GER

Multiscale

163
www.francobontempi.org

Str
o N
GER

Multiscale (ventilation)

164
www.francobontempi.org

Str
o N
GER

Multiscale (fire)

165
www.francobontempi.org

Str
o N
GER

Multiscale (structural)

166
www.francobontempi.org

Str
o N
GER

Multiscale (structural)

167
www.francobontempi.org

Str
o N
GER

5
PROGETTO
Basis
Failure path
Risk
168
www.francobontempi.org

Str
o N
GER

BASIS

169
www.francobontempi.org

Str
o N
GER

3/22/2011

Design Process - ISO 13387
A. Design constraints and possibilities
(blue),...
DESIGN

ACTION

RESPONSE

FSE

SS0a
PRESCRIBED
DESIGN
PARAMETERS

SS0b
ESTIMATED
DESIGN
PARAMETERS

(1+2)
ACTION
DEFINITIO...
www.francobontempi.org

Str
o N
GER

STRUCTURAL
CONCEPTION

Yes
threats
No
STRUCTURAL
TOPOLOGY
&
GEOMETRY
passive
structur...
STRUCTURAL
CONCEPTION

STRUCTURAL
CONCEPTION

Yes
threats
No
STRUCTURAL
TOPOLOGY
&
GEOMETRY
passive
structural
char acteri...
No

www.francobontempi.org

FIRE DETECTION
& SUPPRESSION

Str
o N
GER

STRUCTURAL
CONCEPTION

Yes
threats
No
STRUCTURAL
TO...
www.francobontempi.org

Str
o N
GER

Fire fighting timeline

175
www.francobontempi.org

Str
o N
GER

STRUCTURAL
CONCEPTION

STRUCTURAL
TOPOLOGY
&
GEOMETRY
STRUCTURAL
MATERIAL
& PARTS

FI...
IN
-D
EP
TH

DE
FE

NC
E

www.francobontempi.org

Str
o N
GER

FAILURE PATH

177
www.francobontempi.org

Str
o N
GER

Controlled vs. Uncontrolled Events

178
www.francobontempi.org

Str
o N
GER

Controlled vs. Uncontrolled Events

179
Fire safety concepts tree (NFPA)
1

1
Strategie per
la gestione
dell'incendio

2

2

3
Gestione
dell'evento

Prevenzione

...
Fire safety concepts tree (NFPA)
1

1
Strategie per
la gestione
dell'incendio

2

2

3
Gestione
dell'evento

Prevenzione

...
www.francobontempi.org

Str
o N
GER

Basis of tunnel fire safety design

• The first priority identified in the literature...
www.francobontempi.org

Str
o N
GER

183
www.francobontempi.org

Str
o N
GER

RISK CONCERN

184
www.francobontempi.org

Str
o N
GER

Risk treatment
START

100 %

Option 1 :
RISK
AVOIDANCE

50 %

No
50 %

Yes

Option 2 ...
Str
o N
GER
www.francobontempi.org

Option 1 Risk avoidance, which usually means not
proceeding to continue with the syste...
Quantitative Risk Analysis

Luur, 2002

www.francobontempi.org

Str
o N
GER

187
www.francobontempi.org

Str
o N
GER

Risk Analysis, Assessment, Management
(IEC 1995)

188
www.francobontempi.org

RISK CONCERNS

Str
o N
GER

DEFINE CONTEXT
(social, individual,
political, organizational,
technol...
www.francobontempi.org

Str
o N
GER

190
www.francobontempi.org

Str
o N
GER

RISK
ANALYSIS

SCENARIOS

DEFINE SYSTEM
(the system is usually decomposed into
a numb...
ISHIKAWA DIAGRAM

www.francobontempi.org

Str
o N
GER

192
www.francobontempi.org

Str
o N
GER

193
www.francobontempi.org

Str
o N
GER

EVENT TREE
Triggering
event

Fire
ignition

Fire
location

1. Fire
extinguished
by pe...
www.francobontempi.org

Str
o N
GER

NUMERICAL
MODELING

SIMULATIONS

DEFINE SYSTEM
(the system is usually decomposed into...
www.francobontempi.org

Str
o N
GER

196
www.francobontempi.org

Str
o N
GER

197
www.francobontempi.org

Str
o N
GER

198
Str
o N
GER
www.francobontempi.org

F (frequency) – N (number of fatalities) curve

• An F–N curve is an alternative way o...
www.francobontempi.org

Str
o N
GER

FN-curves UK Road Rail Aviation Transport, 67-01

200
www.francobontempi.org

Str
o N
GER

Persson, M. Quantitative Risk Analysis Procedure for
the Fire Evacuation of a Road Tu...
www.francobontempi.org

Str
o N
GER

Risk acceptance – ALARP (1)
RISK MAGNITUDE
INTOLERABLE
REGION

As
Low
As
Reasonably
P...
www.francobontempi.org

Str
o N
GER

Risk acceptance – ALARP (2)

203
www.francobontempi.org

Str
o N
GER

204
www.francobontempi.org

Str
o N
GER

Risk reduction by design

205
Str
o N
GER
www.francobontempi.org

Monetary values – cost of human life (!)
What is the maximum amount the society (or th...
www.francobontempi.org

Str
o N
GER

6
RESISTENZA

207
www.francobontempi.org

Str
o N
GER

The burnt out interior
of the Mont Blanc Tunnel

208
www.francobontempi.org

Str
o N
GER

Curve temperatura - tempo

209
Str
o N
GER
www.francobontempi.org

Types of fire exposure
for tunnel analysis
Cellulosic
RABT-ZTV train

Hydrocarbon
RABT...
www.francobontempi.org

Str
o N
GER

Cellulosic curve

• Defined in various national standards, e.g. ISO 834, BS 476: part...
www.francobontempi.org

Str
o N
GER

Hydrocarbon (HC) curve

• Although the cellulosic curve has been in use for many year...
www.francobontempi.org

Str
o N
GER

Hydrocarbon mod. (HCM) curve

• Increased version of the hydrocarbon curve, prescribe...
www.francobontempi.org

Str
o N
GER

RABT ZTV curves
RABT-ZTV (train)
Time (minutes) T (°C)
0
15
5
1200
60
1200
170
15
RAB...
www.francobontempi.org

Str
o N
GER

RWS (Rijkswaterstaat) curve
RWS,
RijksWaterStaat
Time
T
(minutes)
(°C)
0
20
3
890
5
1...
www.francobontempi.org

Str
o N
GER

216
www.francobontempi.org

Str
o N
GER

217
www.francobontempi.org

Str
o N
GER

Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar
tunnel – gas...
www.francobontempi.org

Str
o N
GER

219
www.francobontempi.org

Str
o N
GER

220
www.francobontempi.org

Str
o N
GER

Fire Scenario Recommendation

221
www.francobontempi.org

Str
o N
GER

Verifiche

222
www.francobontempi.org

Str
o N
GER

Mechanical Analysis
• The mechanical analysis shall be performed for the
same duratio...
www.francobontempi.org

Str
o N
GER

Verification of fire resistance (3D)
R = structural resistance

R=R(t,T)=R(t,T(t))=R(...
www.francobontempi.org

Str
o N
GER

Verification of fire resistance (R-safe)
R = structural resistance

Rfi,d,t

Efi,requ...
www.francobontempi.org

Str
o N
GER

Verification of fire resistance (R-fail)
R = structural resistance

Failure !
Rfi,d,t...
www.francobontempi.org

Str
o N
GER

Verification of fire resistance (t)
R = structural resistance

Failure !

Efi,requ,t
...
www.francobontempi.org

Str
o N
GER

Verification of fire resistance (T)
R = structural resistance

Failure !

Efi,requ,t
...
www.francobontempi.org

Str
o N
GER

Verification of fire resistance (T)
R = structural resistance

Failure !

Efi,requ,t
...
www.francobontempi.org

Str
o N
GER

Comportamenti termo-meccanici

230
www.francobontempi.org

Str
o N
GER

Trasformazione del calcestruzzo
alle alte temperature

231
www.francobontempi.org

Str
o N
GER

Parametri per la relazione tensioni-deformazioni
per il calcestruzzo ad elevate tempe...
www.francobontempi.org

Str
o N
GER

Calcestruzzo ad aggregato siliceo in condizioni di
compressione uniassiale ad elevate...
www.francobontempi.org

Str
o N
GER

Variazione del coefficiente di riduzione della
resistenza a compressione del calcestr...
www.francobontempi.org

Str
o N
GER

Relazioni tensioni-deformazioni per acciai da
calcestruzzo armato ordinario
laminati ...
www.francobontempi.org

Str
o N
GER

Parametri per la relazione tensioni-deformazioni
per acciai da calcestruzzo armato or...
Spalling
Spalling is an umbrella term, covering different damage phenomena
that may occur to a concrete structure during f...
Spalling criteria (literature review)
• Explosive spalling occurs during the first 20-30 minutes of the
standard cellulosi...
www.francobontempi.org

Str
o N
GER

239
www.francobontempi.org

Str
o N
GER

240
www.francobontempi.org

Str
o N
GER

7
CONCLUSIONI
Conceptual design
Resilience

241
www.francobontempi.org

Str
o N
GER

242
www.francobontempi.org

Str
o N
GER

Conceptual Design

243
www.francobontempi.org

Str
o N
GER

Conceptual Design

DISASTER CHAIN
MULTI-HAZARD
BLACK-SWAN
244
www.francobontempi.org

Str
o N
GER

Forensic Engineering
Flow chart

Tabella dotazioni Frejùs

245
www.francobontempi.org

Str
o N
GER

Resilience

246
www.francobontempi.org

Str
o N
GER

Resilience

• Resilience is defined as
“the positive ability of a system or
company t...
www.francobontempi.org

Str
o N
GER

RESILIENCE
248
www.francobontempi.org

Str
o N
GER

249
www.francobontempi.org

Str
o N
GER

•
•
•
•
•

ACKNOWLEDGEMENTS
Dr. Konstantinos GKOUMAS – Uniroma1
Dr. Francesco PETRINI...
Str
o N
GER
www.stronger2012.com

251
251
StroNGER S.r.l.
Research Spin-off for Structures of the Next Generation:
Energy Harvesting and Resilience
Roma – Milano – ...
Upcoming SlideShare
Loading in...5
×

Approccio sistemico per la sicurezza delle gallerie in caso di incendio

150

Published on

La Direzione Regionale dei Vigili del fuoco per la Calabria e l' Università della Calabria hanno organizzato una giornata di studio sulla “Resistenza al fuoco delle strutture” che si terrà in data 6 febbraio, con inizio alle ore 10.00 presso l’Università della Calabria, Dipartimento Ingegneria Civile, in cui saranno trattati argomenti relativi alla progettazione strutturale antincendio. In particolare:

La modellazione dell’incendio.

Illustrazione dei metodi semplificati degli eurocodici per le verifiche analitiche di resistenza al fuoco.

La progettazione antincendio nelle facciate degli edifici civili.

L’approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici.

Analisi strutturale in caso di incendio: impostazione e applicazioni.

http://www.vigilfuococalabria.com/territorio/direzione/291-unical-giornata-di-studio-resistenza-al-fuoco-delle-strutture-2.html

Published in: Education, Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
150
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Approccio sistemico per la sicurezza delle gallerie in caso di incendio

  1. 1. Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici Prof. Dr. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Facolta’ di Ingegneria Civile e Industriale Universita’ degli Studi di Roma La Sapienza www.francobontempi.org Str o N GER 1
  2. 2. www.francobontempi.org Str o N GER 2
  3. 3. Scopo della presentazione • Far vedere gli aspetti piu’ generali della progettazione strutturale antincendio: Complessita’ del problema; Approccio sistemico; Natura accidentale dell’azione incendio; Progettazione prestazionale/prescrittiva; Aspetti specifici delle gallerie stradali. www.francobontempi.org Str o N GER 3
  4. 4. www.francobontempi.org Str o N GER 1 OGGETTO Caratteristiche delle gallerie Geometrie Impianti 4
  5. 5. www.francobontempi.org Str o N GER GEOMETRIE 5
  6. 6. www.francobontempi.org Str o N GER Tipo A - autostrade 6
  7. 7. www.francobontempi.org Str o N GER 7
  8. 8. www.francobontempi.org Str o N GER Tipo B – extraurbane principali 8
  9. 9. Str o N GER www.francobontempi.org Tipo C – extraurbane secondarie 9
  10. 10. www.francobontempi.org Str o N GER 10
  11. 11. www.francobontempi.org Str o N GER 11
  12. 12. www.francobontempi.org Str o N GER 12
  13. 13. www.francobontempi.org Str o N GER 13
  14. 14. www.francobontempi.org Str o N GER 14
  15. 15. www.francobontempi.org Str o N GER 15
  16. 16. www.francobontempi.org Str o N GER 16
  17. 17. www.francobontempi.org Str o N GER 17
  18. 18. www.francobontempi.org Str o N GER Sistema vs Struttura Opera Viva Opera Morta 18
  19. 19. www.francobontempi.org Str o N GER IMPIANTI VENTILAZIONE 19
  20. 20. www.francobontempi.org Str o N GER 20
  21. 21. www.francobontempi.org Str o N GER Piston effect • Is the result of natural induced draft caused by free-flowing traffic (> 50 km/h) in uni-directional tunnel thus providing natural ventilation. 21
  22. 22. www.francobontempi.org Str o N GER Mechanical ventilation • “forced” ventilation is required where piston effect is not sufficient such as in – congested traffic situations; – bi-directional tunnels (piston effect is neutralized by flow of traffic in two opposite directions); – long tunnels with high traffic volumes. 22
  23. 23. Str o N GER www.francobontempi.org TUNNEL VENTILATION SYSTEMS • Road Tunnel Ventilation Systems have two modes of operation: • Normal ventilation, for control of air quality inside tunnels due to vehicle exhaust emissions: – in any possible traffic situation, tunnel users and staff must not suffer any damage to their health regardless the duration of their stay in the tunnel; – the necessary visual range must be maintained to allow for safe stopping. • Emergency ventilation in case of fire, for smoke control: – the escape routes must be kept free from smoke to allow for selfrescue; – the activities of emergency services must be supported by providing the best possible conditions over a sufficient time period ; – the extent of damage and injuries (to people, vehicles and the tunnel structure itself) must be kept to a minimum. 23
  24. 24. www.francobontempi.org Str o N GER Longitudinal ventilation system • employs jet fans suspended under tunnel roof; in normal operation fresh air is introduced via tunnel entering portal and polluted air is discharged from tunnel leaving portal. 24
  25. 25. www.francobontempi.org Str o N GER 25
  26. 26. www.francobontempi.org Str o N GER 26
  27. 27. Str o N GER www.francobontempi.org Semi-transverse ventilation system • employs ceiling plenum connected to central fan room equipped with axial fans; in normal operation fresh air is introduced along the tunnel trough openings in the ventilation plenum while polluted air is discharged via tunnel portals. 27
  28. 28. www.francobontempi.org Str o N GER Transverse ventilation system • employs double supply and exhaust plenums connected to central fan rooms equipped with axial fans; in normal operation fresh air is introduced and exhausted via openings in double ventilation plenums. 28
  29. 29. www.francobontempi.org Str o N GER 29
  30. 30. www.francobontempi.org Str o N GER 30
  31. 31. www.francobontempi.org Str o N GER 31
  32. 32. www.francobontempi.org Str o N GER Attachments • Dispersion stack and fan room combined with longitudinal ventilation: may be required in order to reduce adverse effect on environment of discharge of polluted air from tunnel, where buildings are located in proximity (< 100m) to tunnel leaving portal. 32
  33. 33. www.francobontempi.org Str o N GER 33
  34. 34. www.francobontempi.org Str o N GER Ventilation unit Air extraction Ventilation unit Supply of fresh air 34
  35. 35. www.francobontempi.org Str o N GER 35
  36. 36. www.francobontempi.org Str o N GER 2 COMPLESSITA’ Approccio prestazionale Modellazione Sicurezza 36
  37. 37. System Complexity (Perrow) couplings TIGHT LINEAR interactions NONLINEAR LOOSE www.francobontempi.org Str o N GER 37
  38. 38. www.francobontempi.org Str o N GER APPROCCIO PRESTAZIONALE 38
  39. 39. www.francobontempi.org Str o N GER 39
  40. 40. www.francobontempi.org Str o N GER Prescrittivo (1) APPROCCIO PRESCRITTIVO APPROCCIO PRESTAZIONALE 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 INSIEME DI STRUMENTI LOGICI E MATERIALI #3 GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI 40
  41. 41. Str o N GER www.francobontempi.org Prescrittivo (2) prescrittivo Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Requisiti Requisiti prestazionale Requisiti Requisiti Elementi Costituenti Elementi Costituenti 41
  42. 42. www.francobontempi.org Str o N GER Prestazionale (1) APPROCCIO PRESCRITTIVO APPROCCIO PRESTAZIONALE 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 INSIEME DI STRUMENTI LOGICI E MATERIALI #3 GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI 42
  43. 43. Str o N GER www.francobontempi.org Prestazionale (2) prescrittivo Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Elementi Costituenti Requisiti Requisiti prestazionale Requisiti Requisiti Elementi Costituenti Elementi Costituenti 43
  44. 44. www.francobontempi.org Str o N GER START DEFINIZIONE E DISANIMA DEGLI OBIETTIVI INDIVIDUAZIONE DELLE SOLUZIONI ATTE A RAGGIUNGERE GLI OBIETTIVI ATTIVITA' DI MODELLAZIONE E MISURA GIUDIZIO DELLE PRESTAZIONI RISULTANTI No Yes END 44
  45. 45. www.francobontempi.org Str o N GER 45
  46. 46. www.francobontempi.org Str o N GER 46
  47. 47. www.francobontempi.org Str o N GER livello 1 OBIETTIVI livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: C DEFINIZIONE DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima LIMITI DELLA PERFORMANCE i-esima B livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI RISPETTO DI PRESCRIZIONI MODELLI NUMERICI A NO ESITO MODELLI FISICI 47 SI'
  48. 48. livello 1 OBIETTIVI livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: C DEFINIZIONE DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima LIMITI DELLA PERFORMANCE i-esima B livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI RISPETTO DI PRESCRIZIONI MODELLI NUMERICI A NO ESITO MODELLI FISICI SI' www.francobontempi.org Str o N GER 48
  49. 49. www.francobontempi.org Str o N GER MODELLAZIONE 49
  50. 50. www.francobontempi.org Str o N GER 50
  51. 51. www.francobontempi.org Analysis Strategy #1: Sensitivity governance of priorities Str o N GER 51
  52. 52. www.francobontempi.org Analysis Strategy #2: Bounding behavior governance Str o N GER 52
  53. 53. www.francobontempi.org Analysis Strategy #3: Redundancy Governance Str o N GER 53
  54. 54. www.francobontempi.org Str o N GER NUMERICAL MODELING 54
  55. 55. www.francobontempi.org Factors for Coupling Str o N GER time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) INFORMATION FLOW DIRECTION 55
  56. 56. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Fully Coupled Scheme Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 56
  57. 57. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Staggered Coupled Scheme Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 57
  58. 58. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Temperature Driven Scheme Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 58
  59. 59. time tK time tK time tK time tK TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) www.francobontempi.org Scheme With No Memory Str o N GER MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 59
  60. 60. www.francobontempi.org Str o N GER 60
  61. 61. www.francobontempi.org Str o N GER 61
  62. 62. www.francobontempi.org Str o N GER 62
  63. 63. www.francobontempi.org Str o N GER 63
  64. 64. www.francobontempi.org Str o N GER SICUREZZA 64
  65. 65. RELIABILITY A way to assess the dependability of a system ATTRIBUTES AVAILABILITY MAINTAINABILITY SAFETY the trustworthiness of a system which allows reliance to be justifiably placed on the service it delivers SECURITY INTEGRITY DEPENDABILITY of STRUCTURAL SYSTEMS www.francobontempi.org Str o N GER High level / active performance FAULT THREATS An understanding of the things that can affect the dependability of a system ERROR FAILURE Low level / passive performance it is a defect and represents a potential cause of error, active or dormant the system is in an incorrect state: it may or may not cause failure permanent interruption of a system ability to perform a required function under specified operating conditions FAULT TOLERANT DESIGN FAULT DETECTION MEANS FAULT DIAGNOSIS ways to increase the dependability of a system Visions, I., Laprie, J.C., Randell, B., Dependability and its threats: a taxonomy, 18th IFIP World Computer Congress, 65 FAULT MANAGING Toulouse (France) 2004.
  66. 66. RELIABILITY www.francobontempi.org Structural Robustness (1) Str o N GER AVAILABILITY ATTRIBUTE S MAINTAINABILITY SAFETY SECURITY INTEGRITY FAULT THREATS ERROR FAILURE it is a defect and represents a potential cause of error, active or dormant the system is in an incorrect state: it may or may not cause failure permanent interruption of a system ability 66 66 to perform a required function under specified operating conditions
  67. 67. • Capacity of a construction to show a regular decrease of its structural quality due to negative causes. It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). 67 www.francobontempi.org Structural Robustness (2) Str o N GER
  68. 68. 1st level: Material Point 3rd level: Structural Element 4th level: Structural System 2nd level: Element Section Structural Robustness Assessment Usual ULS & SLS Verification Format www.francobontempi.org Levels of Structural Crisis Str o N GER 68
  69. 69. STRUCTURE & LOADS Collapse Mechanism NO SWAY SWAY “IMPLOSION” OF THE STRUCTURE www.francobontempi.org Bad vs Good Collapses Str o N GER is a process in which objects are destroyed by collapsing on themselves “EXPLOSION” OF THE STRUCTURE is a process 69 NOT CONFINED
  70. 70. www.francobontempi.org Str o N GER Design Strategy #1: Continuity 70
  71. 71. www.francobontempi.org Str o N GER Design Strategy #2: Segmentation 71
  72. 72. www.francobontempi.org Str o N GER Esempio di valutazione di roubustezza strutturale 72
  73. 73. www.francobontempi.org Str o N GER Esempio: edificio alto 73 73
  74. 74. www.francobontempi.org Str o N GER Analisi di un componente tipico D0 74
  75. 75. Str o N GER www.francobontempi.org Scenari (1-2) D1 D2 75
  76. 76. Str o N GER www.francobontempi.org Scenari (3-4) D3 D4 76
  77. 77. www.francobontempi.org Str o N GER Modalità di collasso (1-2) D1 D2 77
  78. 78. www.francobontempi.org Str o N GER Modalità di collasso (3-4) D3 D4 78
  79. 79. Str o N GER www.francobontempi.org Sintesi dei risultati: elemento critico 0 4 Lo scenario D4 è quello più cattivo: l’elemento strutturale critico individuato è la colonna più esterna! 79
  80. 80. www.francobontempi.org Modellazione edificio alto Str o N GER 80
  81. 81. www.francobontempi.org Str o N GER 81
  82. 82. www.francobontempi.org Str o N GER Scenari di danneggiamento Scenario 1 Scenario 2 Scenario 3 Scenario 4 (1 asta eliminata) (3 aste eliminate) (5 aste eliminate) (7 aste eliminate) 82
  83. 83. www.francobontempi.org Str o N GER Collasso secondo scenario 1 83
  84. 84. www.francobontempi.org Str o N GER Collasso secondo scenario 2 84
  85. 85. www.francobontempi.org Str o N GER Collasso secondo scenario 3 85
  86. 86. www.francobontempi.org Str o N GER Collasso secondo scenario 4 86
  87. 87. www.francobontempi.org Str o N GER Sintesi dei risultati Moltiplicatore Ultimo e sua variazione u 4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 Delta u Δ F Fu 0,48 4,05 D0 3,57 D1 0,86 3,19 1,41 1,65 2,64 2,40 D3 D4 D2 Scenario di danneggiamento 87
  88. 88. www.francobontempi.org Str o N GER 3 AZIONE Natura dell’azione incendio Carattere accidentale Carattere estensivo Carattere intensivo 88
  89. 89. www.francobontempi.org Str o N GER Aspetti caratteristici dell’incendio • Carattere estensivo (diffusione nello spazio): 1.wildfire 2.urbanfire 3.all’esterno di una costruzione 4.all’interno di una costruzione • Carattere intensivo (andamento nel tempo). • Natura accidentale. 89
  90. 90. www.francobontempi.org Str o N GER Carattere intensivo 90
  91. 91. ISO 13387: Example of Design Fire www.francobontempi.org Str o N GER 91
  92. 92. Str o N GER www.francobontempi.org Andamento nel tempo potenza termica 92
  93. 93. www.francobontempi.org Str o N GER 93
  94. 94. Strategie flashover Temperatura T(t) www.francobontempi.org Str o N GER STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) andamento di T(t) a seguito del successo delle strategie attive 94 Tempo t
  95. 95. www.francobontempi.org Str o N GER Fire Safety Strategies prevention protection active     Limit ignition sources Limit hazardous human behavior Emergency procedure and evacuation   Detection measures (smoke, heat, flame detectors) Suppression measures (sprinklers, fire extinguisher, standpipes, firemen) Smoke and heat evacuation system systemic F L A S H O V E R robustness passive    Create fire compartments Prevent damage in the elements Prevent loss of functionality in the building  Prevent the propagation of collapse, once local damages occurred (e.g. redundancy) structural 95
  96. 96. Str o N GER 1 prevention N 2 3 www.francobontempi.org Fire Safety Strategies 4 doesn’t trigger Y Y extinguishes active protection triggers Y N no failures passive protection spreads N Y damages no collapse robustness N collapse 96
  97. 97. www.francobontempi.org Str o N GER 97
  98. 98. www.francobontempi.org Str o N GER 98
  99. 99. www.francobontempi.org Str o N GER SnakeFighter 99
  100. 100. www.francobontempi.org Str o N GER Carattere estensivo 100
  101. 101. www.francobontempi.org Str o N GER The Great Fire of Chicago, Oct. 7-10, 1871 101
  102. 102. www.francobontempi.org Str o N GER 102
  103. 103. www.francobontempi.org Str o N GER 103
  104. 104. www.francobontempi.org Str o N GER 104
  105. 105. www.francobontempi.org Str o N GER 105
  106. 106. www.francobontempi.org Str o N GER Windsor Hotel Madrid 106
  107. 107. www.francobontempi.org Str o N GER Natura accidentale 107
  108. 108. www.francobontempi.org Situazioni HPLC Str o N GER High Probability Low Consequences 108
  109. 109. www.francobontempi.org Str o N GER LPHC events Low Probability High Consequences 109
  110. 110. HPLC vs LPHC events HPLC LPHC High Probability Low Probability Low High Consequences Consequences release of energy numbers of breakdown people involved nonlinearity interactions uncertainty decomposability course predictability SMALL SMALL FEW WEAK WEAK WEAK LARGE LARGE MANY STRONG STRONG STRONG HIGH HIGH LOW LOW 110
  111. 111. www.francobontempi.org Str o N GER Impostazione del problema: DETERMINISTICA STOCASTICA Approcci di analisi HPLC LPHC Eventi Frequenti con Conseguenze Limitate Eventi Rari con Conseguenze Elevate ANALISI PRAGMATICA CON SCENARI ANALISI QUALITATIVA DETERMINISTICA ANALISI QUANTITATIVA PROBABILISTICA Complessità: Aspetti non lineari e Meccanismi di interazioni 111
  112. 112. www.francobontempi.org Str o N GER Italian Code for Constructions D.M. 14 settembre 2005 CAPITOLO 2: SICUREZZA E PRESTAZONI ATTESE DOMANDA PRODOTTO CAPITOLO 5: NORME SULLE COSTRUZIONI CAPITOLO 3: AZIONI AMBIENTALI QUALITA’ CAPITOLO 4: AZIONI ACCIDENTALI CAPITOLO 6: AZIONI ANTROPICHE CAPITOLO 7: NORME PER LE OPERE INTERAGENTI CON I TERRENI E CON LE ROCCE, PER GLI INTERVENTI NEI TERRENI E PER LA SICUREZZA DEI PENDII CAPITOLO 9: NORME SULLE COSTRUZIONI ESISTENTI CONTROLLO CAPITOLO 11: MATERIALI E PRODOTTI PER USO STRUTTURALE CAPITOLO 8: COLLAUDO STATICO CAPITOLO 10: NORME PER LA REDAZIONI DEI PROGETTI ESECUTIVI 112
  113. 113. www.francobontempi.org Str o N GER Scenari (D.M. 14 settembre 2005) Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni, deve individuare le possibili situazioni contingenti in cui le azioni possono cimentare l’opera stessa. A tal fine, è definito:  lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera potrà trovarsi durante la vita utile di progetto;  lo scenario di carico: un insieme organizzato e realistico di azioni che cimentano la struttura;  lo scenario di contingenza: l’identificazione di uno stato plausibile e coerente per l’opera, in cui un insieme di azioni (scenario di carico) è applicato su una configurazione strutturale. Per ciascuno stato limite considerato devono essere individuati scenari di carico (ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che rappresentino le combinazioni delle azioni realisticamente possibili e verosimilmente più restrittive. 113
  114. 114. Str o N GER Establish performance requirements www.francobontempi.org Determine geometry, construction and use of the building Establish maximum likely fuel loads Buchanan, 2002 Estimate maximum likely number of occupants and their locations Assume certain fire protection features Carry out fire engineering analysis Modify fire protection features No Acceptable performance Yes Accept design 114
  115. 115. www.francobontempi.org Str o N GER 115
  116. 116. www.francobontempi.org Str o N GER 4 SVILUPPO Dinamica degli incendi in galleria Effetti della ventilazione 116
  117. 117. www.francobontempi.org Str o N GER FIRE DYNAMICS IN TUNNELS 117
  118. 118. Tunnel Fires vs Compartment Fires (0) 118
  119. 119. www.francobontempi.org Str o N GER Tunnel Fires Progression (1) 119
  120. 120. www.francobontempi.org Str o N GER 120
  121. 121. www.francobontempi.org Str o N GER 121
  122. 122. www.francobontempi.org Str o N GER Tunnel Fires Progression (2) 122
  123. 123. www.francobontempi.org Str o N GER Effects of ventilation 123
  124. 124. www.francobontempi.org Str o N GER Temperature development 124
  125. 125. www.francobontempi.org Str o N GER Smoke development • A smoke layer may be created in tunnels at the early stages of a fire with essentially no longitudinal ventilation. However, the smoke layer will gradually descend further from the fire. • If the tunnel is very long, the smoke layer may descend to the tunnel surface at a specific distance from the fire depending on the fire size, tunnel type, and the perimeter and height of the tunnel cross section. • When the longitudinal ventilation is gradually increased, the stratified layer will gradually dissolve. • A backlayering of smoke is created on the upstream side of the fire. • Downstream from the fire there is a degree of stratification of the smoke that is governed by the heat losses to the surrounding walls and by the turbulent mixing between the buoyant smoke layers and the normally opposite moving cold layer. 125
  126. 126. www.francobontempi.org Str o N GER Backlayering 126
  127. 127. www.francobontempi.org Str o N GER 127
  128. 128. www.francobontempi.org Str o N GER Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles 128
  129. 129. www.francobontempi.org Str o N GER Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles 129
  130. 130. www.francobontempi.org Str o N GER Maximum gas temperatures in the cross section of the tunnel during tests with road vehicles 130
  131. 131. www.francobontempi.org Str o N GER EMERGENCY VENTILATION 131
  132. 132. www.francobontempi.org Str o N GER Smoke stratification 132
  133. 133. www.francobontempi.org Str o N GER Natural smoke venting • It can be sufficient in short, level tunnels where smoke stratification allows for escape in clear/tenable conditions. 133
  134. 134. www.francobontempi.org Str o N GER Smoke filling long tunnel 134
  135. 135. www.francobontempi.org Str o N GER Emergency ventilation with longitudinal system • It can be employed in unidirectional, medium length tunnels, with free flowing traffic conditions. Smoke is mechanically exhausted in direction of traffic circulation, clear tenable conditions for escape are obtained on upstream side of fire. 135
  136. 136. www.francobontempi.org Str o N GER 136
  137. 137. www.francobontempi.org Str o N GER 137
  138. 138. www.francobontempi.org Str o N GER k size factor for HGV fire 138
  139. 139. www.francobontempi.org Str o N GER k size factor for small pool fire 139
  140. 140. www.francobontempi.org Str o N GER Emergency ventilation with semitransverse “point extraction” system • Smoke is mechanically exhausted from single ceiling opening (reverse mode) leaving clear tenable escape conditions on both sides of fire. 140
  141. 141. www.francobontempi.org Str o N GER 141
  142. 142. www.francobontempi.org Str o N GER Observation: goal • The purpose of controlling the spread of smoke is to keep people as long as possible in a smoke-free environment. • This means that the smoke stratification must be kept intact, leaving a more or less clear and breathable air underneath the smoke layer. • The stratified smoke is taken out of the tunnel through exhaust openings located in the ceiling or at the top of the sidewalls. 142
  143. 143. www.francobontempi.org Str o N GER Observation: longitudinal velocity • With practically zero longitudinal air velocity, the smoke layer expands to both sides of the fire. The smoke spreads in a stratified way for up to 10 min. • After this initial phase, smoke begins to mix over the entire cross section, unless by this time the extraction is in full operation. • The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity of the fire incidence zone. With higher velocities, the vertical turbulence in the shear layer between smoke and fresh air quickly cools the upper layer and the smoke then mixes over the entire 143 cross section.
  144. 144. www.francobontempi.org Str o N GER Observations: turbulence • With an air velocity of around 2 m/s, most of the smoke of a medium-size fire spreads to one side of the fire (limited backlayering) and starts mixing over the whole cross section at a distance of 400 to 600 m downstream of the fire site. This mixing over the cross section can also be prevented if the smoke extraction is activated early enough. • Vehicles standing in the longitudinal air flow increase strongly the vertical turbulence and encourage the vertical mixing of the smoke. 144
  145. 145. www.francobontempi.org Str o N GER Observation: fresh air • In a transverse ventilation system, the fresh air jets entering the tunnel at the floor level induce a rotation of the longitudinal airflow, which tends to bring the smoke layer down to the road. • No fresh air is to be injected from the ceiling in a zone with smoke because this increases the amount of smoke and tends to suppress the stratification. 145
  146. 146. www.francobontempi.org Str o N GER Observation: smoke extraction • In reversible semi-transverse ventilation with the duct at the ceiling, the fresh air is added through ceiling openings in normal ventilation operation. • If a fire occurs, as long as fresh air is supplied through ceiling openings, the smoke quantity increases by this amount and strong jets tend to bring the smoke down to the road surface. The conversion of the duct from supply to extraction must be done as quickly as possible. 146
  147. 147. www.francobontempi.org Str o N GER Observation: traffic conditions • For a tunnel with one-way traffic, designed for queues (an urban area), the ventilation design must take into consideration that cars can likely stand to both sides of the fire because of the traffic. In urban areas it is usual to find stop-andgo traffic situations. • For a tunnel with two-way traffic, where the vehicles run in both directions, it must be taken into consideration that in the event of a fire vehicles will generally be trapped on both sides of the fire. 147
  148. 148. www.francobontempi.org Strategies Str o N GER 148
  149. 149. www.francobontempi.org Str o N GER Smoke extraction • Continuous extraction into a return air duct is needed to remove a stratified smoke layer out of the tunnel without disturbing the stratification. • The traditional way to extract smoke is to use small ceiling openings distributed at short intervals throughout the tunnel. • Another efficient way to remove smoke quickly out of the traffic space is to install large openings with remotely controlled dampers. They are normally in an open position where equal extraction is taking place over the whole tunnel length. 149
  150. 150. Tunnel with a single-point extraction system The usual way to control the longitudinal velocity is to provide several independent ventilation sections. When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire section can be maintained by a suitable operation of the individual air ducts. By reversing the fan operation in the exhaust air duct, this duct can be 150 used to supply air and vice versa. www.francobontempi.org Str o N GER
  151. 151. www.francobontempi.org Str o N GER FIRE MODELING 151
  152. 152. www.francobontempi.org Str o N GER 152
  153. 153. www.francobontempi.org Str o N GER Levels 153
  154. 154. www.francobontempi.org Str o N GER 1D 154
  155. 155. www.francobontempi.org Str o N GER 1D 155
  156. 156. www.francobontempi.org Str o N GER 2D (zone model) 156
  157. 157. www.francobontempi.org Str o N GER 2D (zone model) 157
  158. 158. www.francobontempi.org Str o N GER 158
  159. 159. 3D (ventilation) www.francobontempi.org FDS Simulation Str o N GER 159
  160. 160. 3D (fire) www.francobontempi.org FDS Simulation Str o N GER 160
  161. 161. www.francobontempi.org Str o N GER 3D (traffic) 161
  162. 162. www.francobontempi.org Str o N GER 162
  163. 163. www.francobontempi.org Str o N GER Multiscale 163
  164. 164. www.francobontempi.org Str o N GER Multiscale (ventilation) 164
  165. 165. www.francobontempi.org Str o N GER Multiscale (fire) 165
  166. 166. www.francobontempi.org Str o N GER Multiscale (structural) 166
  167. 167. www.francobontempi.org Str o N GER Multiscale (structural) 167
  168. 168. www.francobontempi.org Str o N GER 5 PROGETTO Basis Failure path Risk 168
  169. 169. www.francobontempi.org Str o N GER BASIS 169
  170. 170. www.francobontempi.org Str o N GER 3/22/2011 Design Process - ISO 13387 A. Design constraints and possibilities (blue), B. Action definition and development (red), C. Passive system and active response (yellow), D. Safety and performance (purple). 170
  171. 171. DESIGN ACTION RESPONSE FSE SS0a PRESCRIBED DESIGN PARAMETERS SS0b ESTIMATED DESIGN PARAMETERS (1+2) ACTION DEFINITION AND DEVELOPMENT (3+4) SYSTEM PASSIVE AND ACTIVE RESPONSE SS5 life safety: occupant behavior, location and condition SS1 initiation and development of fire and fire efluent SS6 property loss SS2 movement of fire effluent SS7 business interruption SS3 structural response and fire spread beyond enclosure of origin SS8 contamination of environment SS4 detection, activitation and suppression SS9 destruction of heritage SAFETY & PERFORMANCE (0) DESIGN CONSTRAINTS AND POSSIBILITIES BUS OF INFORMATION www.francobontempi.org Str o N GER RESULTS 171
  172. 172. www.francobontempi.org Str o N GER STRUCTURAL CONCEPTION Yes threats No STRUCTURAL TOPOLOGY & GEOMETRY passive structural characteristics Yes threats No STRUCTURAL MATERIAL & PARTS Yes STRUCTURAL SYSTEM CHARACTERISTICS threats No FIRE DETECTION & SUPPRESSION active structural characteristics Yes threats STRUCTURAL SYSTEM WEAKNESS No ORGANIZATION & FIREFIGHTERS Yes threats No alive structural characteristics MAINTENANCE & USE Yes threats No 172
  173. 173. STRUCTURAL CONCEPTION STRUCTURAL CONCEPTION Yes threats No STRUCTURAL TOPOLOGY & GEOMETRY passive structural char acteristics www.francobontempi.org Str o N GER Yes threats No STRUCTURAL MATERIAL & PARTS Yes threats No Yes FIRE DETECTION & SUPPRESSION active structural char acteristics threats Yes threats No ORGANIZATION & FIREFIGHTERS Yes No threats No alive structural char acteristics MAINTENANCE & USE Yes STRUCTURAL TOPOLOGY & GEOMETRY threats No passive structural characteristics Yes threats No STRUCTURAL MATERIAL & PARTS Yes threats No 173
  174. 174. No www.francobontempi.org FIRE DETECTION & SUPPRESSION Str o N GER STRUCTURAL CONCEPTION Yes threats No STRUCTURAL TOPOLOGY & GEOMETRY passive structural char acteristics Yes threats No STRUCTURAL MATERIAL & PARTS active structural characteristics Yes threats No Yes threats No FIRE DETECTION & SUPPRESSION active structural char acteristics Yes threats No ORGANIZATION & FIREFIGHTERS ORGANIZATION & FIREFIGHTERS Yes threats No alive structural char acteristics MAINTENANCE & USE Yes threats No Yes threats No alive structural characteristics MAINTENANCE & USE Yes threats No 3/22/2011 PROGETTAZIONE STRUTTURALE ANTINCENDIO 174 174
  175. 175. www.francobontempi.org Str o N GER Fire fighting timeline 175
  176. 176. www.francobontempi.org Str o N GER STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY STRUCTURAL MATERIAL & PARTS FIRE DETECTION & SUPPRESSION ORGANIZATION & FIREFIGHTERS MAINTENANCE & USE CRISIS 176
  177. 177. IN -D EP TH DE FE NC E www.francobontempi.org Str o N GER FAILURE PATH 177
  178. 178. www.francobontempi.org Str o N GER Controlled vs. Uncontrolled Events 178
  179. 179. www.francobontempi.org Str o N GER Controlled vs. Uncontrolled Events 179
  180. 180. Fire safety concepts tree (NFPA) 1 1 Strategie per la gestione dell'incendio 2 2 3 Gestione dell'evento Prevenzione 4 Gestione dell'incendio 3 15 Gestione delle persone e dei beni 16 Difesa sul posto 4 18 Disposibilità delle vie di fuga 5 6 7 8 9 17 Spostamento 5 Controllo della quantità di combustibile 10 Soppressione dell'incendio 11 Automatica 6 Controllo dei materiali presenti 13 Controllo dell'incendio attraverso il progetto 19 Far avvenire il deflusso Buchanan, 2002 www.francobontempi.org Str o N GER 12 Manuale 7 Controllo del movimento dell'incendio 8 Ventilazione 14 Resistenza e stabilità strutturale 9 Contenimento 180
  181. 181. Fire safety concepts tree (NFPA) 1 1 Strategie per la gestione dell'incendio 2 2 3 Gestione dell'evento Prevenzione 4 Gestione dell'incendio 3 15 Gestione delle persone e dei beni 16 Difesa sul posto 4 18 Disposibilità delle vie di fuga 5 6 7 8 9 17 Spostamento 5 Controllo della quantità di combustibile 10 Soppressione dell'incendio 11 Automatica 6 Controllo dei materiali presenti 13 Controllo dell'incendio attraverso il progetto 19 Far avvenire il deflusso Buchanan, 2002 www.francobontempi.org Str o N GER 12 Manuale 7 Controllo del movimento dell'incendio 8 Ventilazione 14 Resistenza e stabilità strutturale 9 Contenimento 181
  182. 182. www.francobontempi.org Str o N GER Basis of tunnel fire safety design • The first priority identified in the literature for fire design of all tunnels is to ensure: 1. Prevention of critical events that may endanger human life, the environment, and the tunnel structure and installations. 2. Self-rescue of people present in the tunnel at time of the fire. 3. Effective action by the rescue forces. 4. Protection of the environment. 5. Limitation of the material and structural damage. • Furthermore, part of the objective is to reduce the consequences and minimize the economic loss caused by fires. 182
  183. 183. www.francobontempi.org Str o N GER 183
  184. 184. www.francobontempi.org Str o N GER RISK CONCERN 184
  185. 185. www.francobontempi.org Str o N GER Risk treatment START 100 % Option 1 : RISK AVOIDANCE 50 % No 50 % Yes Option 2 : RISK REDUCTION 20 % No 30 % Yes Option 3 : RISK TRANSFER No 25 % Yes 5% Option 4 : RISK ACCEPTANCE No STOP 185
  186. 186. Str o N GER www.francobontempi.org Option 1 Risk avoidance, which usually means not proceeding to continue with the system; this is not always a feasible option, but may be the only course of action if the hazard or their probability of occurrence or both are particularly serious; Option 2 Risk reduction, either through (a) reducing the probability of occurrence of some events, or (b) through reduction in the severity of the consequences, such as downsizing the system, or (c) putting in place control measures; Option 3 Risk transfer, where insurance or other financial mechanisms can be put in place to share or completely transfer the financial risk to other parties; this is not a feasible option where the primary consequences are not financial; Option 4 Risk acceptance, even when it exceeds the criteria, but perhaps only for a limited time until other 186 measures can be taken.
  187. 187. Quantitative Risk Analysis Luur, 2002 www.francobontempi.org Str o N GER 187
  188. 188. www.francobontempi.org Str o N GER Risk Analysis, Assessment, Management (IEC 1995) 188
  189. 189. www.francobontempi.org RISK CONCERNS Str o N GER DEFINE CONTEXT (social, individual, political, organizational, technological) RSK ANALYSIS (for the system are defined organization, scenarios, and consequences of occurences) RISK ANALYSIS RISK ASSESSMENT RISK MANAGEMENT RISK ASSESSMENT (compare risks against criteria) MONITOR AND REVIEW RISK TREATMENT option 1 - avoidance option 2 - reduction option 3 - transfer option 4 - acceptance 189
  190. 190. www.francobontempi.org Str o N GER 190
  191. 191. www.francobontempi.org Str o N GER RISK ANALYSIS SCENARIOS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS FIRE EVENT 191
  192. 192. ISHIKAWA DIAGRAM www.francobontempi.org Str o N GER 192
  193. 193. www.francobontempi.org Str o N GER 193
  194. 194. www.francobontempi.org Str o N GER EVENT TREE Triggering event Fire ignition Fire location 1. Fire extinguished by personnel 2. Intrusion of fire fighters 3. Fire suppression Scenario A1 YES (P1) AREA A (PA) NO (1-P1) Arson YES (P2) A2 YES (P3) NO (1-P3) A3 NO (1-P2) A4 YES (P3) NO (1-P3) A5 Short circuit B1 YES (P1) Explosion AREA B (PB) NO (1-P1) Cigarette fire YES (P2) B2 YES (P3) NO (1-P3) B3 NO (1-P2) B4 YES (P3) NO (1-P3) B5 Other C1 YES (P1) AREA C (PC) PREPARAZIONE NO (1-P1) YES (P2) C2 YES (P3) NO (1-P3) C3 EVOLUZIONE NO (1-P2) YES (P3) NO (1-P3) C4 194 C5
  195. 195. www.francobontempi.org Str o N GER NUMERICAL MODELING SIMULATIONS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) RISK ANALYSIS ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS 195
  196. 196. www.francobontempi.org Str o N GER 196
  197. 197. www.francobontempi.org Str o N GER 197
  198. 198. www.francobontempi.org Str o N GER 198
  199. 199. Str o N GER www.francobontempi.org F (frequency) – N (number of fatalities) curve • An F–N curve is an alternative way of describing the risk associated with loss of lives. • An F–N curve shows the frequency (i.e. the expected number) of accident events with at least N fatalities, where the axes normally are logarithmic. • The F–N curve describes risk related to largescale accidents, and is thus especially suited for characterizing societal risk. 199
  200. 200. www.francobontempi.org Str o N GER FN-curves UK Road Rail Aviation Transport, 67-01 200
  201. 201. www.francobontempi.org Str o N GER Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a Road Tunnel - An Illustrative Example. Lund, 2002 201
  202. 202. www.francobontempi.org Str o N GER Risk acceptance – ALARP (1) RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained As Low As Reasonably Achievable Necessary to maintain assurance that the risk remains at this level 202
  203. 203. www.francobontempi.org Str o N GER Risk acceptance – ALARP (2) 203
  204. 204. www.francobontempi.org Str o N GER 204
  205. 205. www.francobontempi.org Str o N GER Risk reduction by design 205
  206. 206. Str o N GER www.francobontempi.org Monetary values – cost of human life (!) What is the maximum amount the society (or the decisionmaker) is willing to pay to reduce the expected number of fatalities by 1? Typical numbers for the value of a statistical life used in cost-benefit analysis are 1–10 million euros. 206
  207. 207. www.francobontempi.org Str o N GER 6 RESISTENZA 207
  208. 208. www.francobontempi.org Str o N GER The burnt out interior of the Mont Blanc Tunnel 208
  209. 209. www.francobontempi.org Str o N GER Curve temperatura - tempo 209
  210. 210. Str o N GER www.francobontempi.org Types of fire exposure for tunnel analysis Cellulosic RABT-ZTV train Hydrocarbon RABT-ZTV car Hydrocarbon modified RWS 1400 1200 Temperature (°C) 1000 800 600 400 200 0 0 30 60 90 Time (min.) 120 150 180 210
  211. 211. www.francobontempi.org Str o N GER Cellulosic curve • Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc. • This curve is the lowest used in normal practice. • It is based on the burning rate of the materials found in general building 211 materials.
  212. 212. www.francobontempi.org Str o N GER Hydrocarbon (HC) curve • Although the cellulosic curve has been in use for many years, it soon became apparent that the burning rates for certain materials e.g. petrol gas, chemicals etc, were well in excess of the rate at which for instance, timber would burn. • The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc. 212
  213. 213. www.francobontempi.org Str o N GER Hydrocarbon mod. (HCM) curve • Increased version of the hydrocarbon curve, prescribed by the French regulations. • The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve. • However, the temperature gradient in the first few minutes of the HCM fire is as severe as all hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete structure and concrete spalling as a result 213 of it.
  214. 214. www.francobontempi.org Str o N GER RABT ZTV curves RABT-ZTV (train) Time (minutes) T (°C) 0 15 5 1200 60 1200 170 15 RABT-ZTV (car) Time (minutes) T (°C) 0 15 5 1200 30 1200 140 15 • The RABT curve was developed in Germany as a result of a series of test programs such as the EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5 minutes. • The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the temperature of the reinforcement should not exceed 300°C. There is no requirement for a maximum interface temperature. 214
  215. 215. www.francobontempi.org Str o N GER RWS (Rijkswaterstaat) curve RWS, RijksWaterStaat Time T (minutes) (°C) 0 20 3 890 5 1140 10 1200 30 1300 60 1350 90 1300 120 1200 180 1200 • The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could occur, lasting up to 120 minutes. • The failure criteria for specimens is that the temperature of the interface between the concrete and the fire protective lining should not exceed 380°C 215 and the temperature on the reinforcement should not exceed 250°C.
  216. 216. www.francobontempi.org Str o N GER 216
  217. 217. www.francobontempi.org Str o N GER 217
  218. 218. www.francobontempi.org Str o N GER Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas temperature and Radiation”, Proceedings of the International Seminar on Catastrophic Tunnel Fires, Borås, Sweden, 20-21 November 2003. 218
  219. 219. www.francobontempi.org Str o N GER 219
  220. 220. www.francobontempi.org Str o N GER 220
  221. 221. www.francobontempi.org Str o N GER Fire Scenario Recommendation 221
  222. 222. www.francobontempi.org Str o N GER Verifiche 222
  223. 223. www.francobontempi.org Str o N GER Mechanical Analysis • The mechanical analysis shall be performed for the same duration as used in the temperature analysis. • Verification of fire resistance should be in: – in the strength domain: Rfi,d,t ≥ Efi,requ,t (resistance at time t ≥ load effects at time t); – in the time domain: tfi,d ≥ tfi,requ (design value of time fire resistance ≥ time required) – In the temperature domain: Td ≤ Tcr (design value of the material temperature ≤ critical material temperature); 223
  224. 224. www.francobontempi.org Str o N GER Verification of fire resistance (3D) R = structural resistance R=R(t,T)=R(t,T(t))=R(t) t = time T=T(t) T = temperature 224
  225. 225. www.francobontempi.org Str o N GER Verification of fire resistance (R-safe) R = structural resistance Rfi,d,t Efi,requ,t t = time T = temperature 225
  226. 226. www.francobontempi.org Str o N GER Verification of fire resistance (R-fail) R = structural resistance Failure ! Rfi,d,t Efi,requ,t t = time T = temperature 226
  227. 227. www.francobontempi.org Str o N GER Verification of fire resistance (t) R = structural resistance Failure ! Efi,requ,t Rfi,d,t t = time T = temperature tfi,d ≥ tfi,requ 227
  228. 228. www.francobontempi.org Str o N GER Verification of fire resistance (T) R = structural resistance Failure ! Efi,requ,t Rfi,d,t t = time Td ≤ Tcr T = temperature 228
  229. 229. www.francobontempi.org Str o N GER Verification of fire resistance (T) R = structural resistance Failure ! Efi,requ,t Rfi,d,t t = time Td ≤ Tcr T = temperature 229
  230. 230. www.francobontempi.org Str o N GER Comportamenti termo-meccanici 230
  231. 231. www.francobontempi.org Str o N GER Trasformazione del calcestruzzo alle alte temperature 231
  232. 232. www.francobontempi.org Str o N GER Parametri per la relazione tensioni-deformazioni per il calcestruzzo ad elevate temperature. 232
  233. 233. www.francobontempi.org Str o N GER Calcestruzzo ad aggregato siliceo in condizioni di compressione uniassiale ad elevate temperature 233
  234. 234. www.francobontempi.org Str o N GER Variazione del coefficiente di riduzione della resistenza a compressione del calcestruzzo ad aggregato siliceo con la temperatura 234
  235. 235. www.francobontempi.org Str o N GER Relazioni tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo ad elevate temperature 235
  236. 236. www.francobontempi.org Str o N GER Parametri per la relazione tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo, a temperature elevate 236
  237. 237. Spalling Spalling is an umbrella term, covering different damage phenomena that may occur to a concrete structure during fire. These phenomena are caused by different mechanisms: •Pore pressure rises due to evaporating water when the temperature rises; •Compression of the heated surface due to a thermal gradient in the cross section; •Internal cracking due to difference in thermal expansion between aggregate and cement paste; •Cracking due to difference in thermal expansion/deformation between concrete and reinforcement bars; •Strength loss due to chemical transitions during heating. www.francobontempi.org Str o N GER 237
  238. 238. Spalling criteria (literature review) • Explosive spalling occurs during the first 20-30 minutes of the standard cellulosic and hydrocarbon fire curves. • After the 2nd minute of a typical hydrocarbon exposure, spalling can occur in high strength concretes with polypropylene fibres and in concretes with high moisture content independent of the type of standard curve. Also, concretes with high moisture content can suffer spalling after the 3rd minute of exposure. • External temperature increments between 20-30ºC/min are typical in the occurrence of explosive spalling. • Temperature increments of more than 3ºC/min are enough for the occurrence of explosive spalling. • Concrete external layers can be released from concrete members when these reach temperatures between 250 - 420ºC; 375 - 425ºC. www.francobontempi.org Str o N GER 238
  239. 239. www.francobontempi.org Str o N GER 239
  240. 240. www.francobontempi.org Str o N GER 240
  241. 241. www.francobontempi.org Str o N GER 7 CONCLUSIONI Conceptual design Resilience 241
  242. 242. www.francobontempi.org Str o N GER 242
  243. 243. www.francobontempi.org Str o N GER Conceptual Design 243
  244. 244. www.francobontempi.org Str o N GER Conceptual Design DISASTER CHAIN MULTI-HAZARD BLACK-SWAN 244
  245. 245. www.francobontempi.org Str o N GER Forensic Engineering Flow chart Tabella dotazioni Frejùs 245
  246. 246. www.francobontempi.org Str o N GER Resilience 246
  247. 247. www.francobontempi.org Str o N GER Resilience • Resilience is defined as “the positive ability of a system or company to adapt itself to the consequences of a catastrophic failure caused by power outage, a fire, a bomb or similar event” or as "the ability of a system to cope with change". 247
  248. 248. www.francobontempi.org Str o N GER RESILIENCE 248
  249. 249. www.francobontempi.org Str o N GER 249
  250. 250. www.francobontempi.org Str o N GER • • • • • ACKNOWLEDGEMENTS Dr. Konstantinos GKOUMAS – Uniroma1 Dr. Francesco PETRINI – Uniroma1 Ing. Alessandra LO CANE – MIT Dr. Filippo GENTILI – Coimbra (PT) Mr. Tiziano BARONCELLI – Uniroma1 250
  251. 251. Str o N GER www.stronger2012.com 251 251
  252. 252. StroNGER S.r.l. Research Spin-off for Structures of the Next Generation: Energy Harvesting and Resilience Roma – Milano – Terni – Atene - Nice Cote Azur Str o N GER www.stronger2012.com Sede operativa: Via Giacomo Peroni 442-444, Tecnopolo Tiburtino, 00131 Roma (ITALY) - info@stronger2012.com 252
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×