Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strallata - Bontempi

407 views

Published on

Appunti del corso di dottorato:
INTRODUZIONE ALL'OTTIMIZZAZIONE STRUTTURALE
Ia parte

Lezione del 28 maggio 2014

Lecture of the Ph.D. Course on STRUCTURAL OPTIMIZATION

May, 28, 2014

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
407
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
61
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Corso di dottorato in Ottimizzazione Strutturale: Applicazione mensola strallata - Bontempi

  1. 1. Franco Bontempi Ordinario di Tecnca delle Costruzioni Facolta’ di Ingegneria Civile e Industriale Sapienza Universita’ di Roma Introduzione alla OTTIMIZZAZIONE STRUTTURALE: APPLICAZIONE AD UNA MENSOLA STRALLATA
  2. 2. 2
  3. 3. Ottimizzazione Strutturale franco.bontempi@uniroma1.it 3 Object of the course • Introduction of basic and advanced ideas and aspects of structural design without to much stress on the analytical apparatus but with some insigth on the computational techniques.
  4. 4. Ottimizzazione Strutturale franco.bontempi@uniroma1.it 4 General Scheduling • 1st Day: Basic definitions of structure, requirements, values, optimization, …; • 2nd Day: Advanced specific case of structural optimization (service / ultimate / extreme scenarios); • 3rd Day: Advanced concepts (structural systems, advanced criteria, tools of design)
  5. 5. EVOLUTION OF THE DESIGN OF A CABLE-STAYED BRACKET
  6. 6. THE OBJECT An innovative device for precast/prestressed beam support www.francobontempi.org
  7. 7. 7 CONNECTION REGIONS • Presence of high stress levels; • Diffusive field of stress - so-called D-regions; • Geometrical complexity, related to the position and interference of different structural parts converging there; • Requirements of minimum space usage, essentially due to architectural appearance; • Necessity to guarantee a substantial good structural behavior - strength, ductility, and robustness; • Demand from constructability point of view. www.francobontempi.org
  8. 8. 8 REINFORCED CONCRETE CORBELS www.francobontempi.org
  9. 9. 9 STRUCTURAL STEEL CORBELS www.francobontempi.org
  10. 10. 10 BEAM SUPPORT www.francobontempi.org
  11. 11. 11 BASIS OF DESIGN (1) • simplicity: the structural configuration of the connection must be made by very regular and flat parts, by which – the stress state has the most possible uniformity; – there are no stress concentrations; – the load transfer is obtained by the most straight path; – it is possible to develop a complete integration between steel parts and concrete mass, with an accurate structural anchorage. www.francobontempi.org
  12. 12. 12 BASIS OF DESIGN (2) • dependability: the structural configuration must be have – suitable functional performance characteristics (Serviceability Limit States, SLS), – appropriate strength capacity (Ultimate Limit States, ULS), – capacity to support accidental situations, without showing disproportionate consequences when triggered by limited damage (Structural Robustness). www.francobontempi.org
  13. 13. CONCEPTUAL DESIGN Definition and optimization of the structural configuration www.francobontempi.org
  14. 14. 14 STRUCTURAL SCHEME Versione iniziale Versione finale beam SX beam DX column www.francobontempi.org
  15. 15. 15 LOAD SCHEMES Reinforcement Bars Vsd Reinforcement Bars Vsd Reinforcement Bars Vsd Reinforcement Bars Vsd SYM ASYM www.francobontempi.org
  16. 16. 16 www.francobontempi.org
  17. 17. 17 www.francobontempi.org
  18. 18. 18 www.francobontempi.org
  19. 19. 19 STRUCTURAL PARTS www.francobontempi.org
  20. 20. 20 FIRST ANALYSIS (A): two dimensional geometry column a Vsd Vsd a/2 Vsd*=Vsd/2 Vsd* =Vsd/2 column a Vsd Vsd column a Vsd Vsd a/2 Vsd*=Vsd/2 Vsd* =Vsd/2 www.francobontempi.org
  21. 21. 21 • the steel parts, the longitudinal bars and the stirrups are represented by bars working both in tension and in compression, while concrete parts are lumped into bars with no tension behavior; • one model a segment of concrete column sufficient to extinguish the diffusive effects connected with this D-region, i.e. until a B- region is reached, governed by the so-called Bernoulli stress regime; FIRST ANALYSIS (B): mechanical modeling by S&T www.francobontempi.org
  22. 22. 22 S & T Model Definition www.francobontempi.org
  23. 23. 23 Strut & Tie Models Reinforcement Bars Vsd Reinforcement Bars Vsd www.francobontempi.org
  24. 24. 24 Reinforcement Bars Vsd Reinforcement Bars Vsd Strut & Tie Results stirrups longitudinal bars concretesteel bracket www.francobontempi.org
  25. 25. 25 Hybrid models Reinforcement Bars Vsd Reinforcement Bars Vsd www.francobontempi.org
  26. 26. 26 Global response End of external bracket displacement -8,00 -7,00 -6,00 -5,00 -4,00 -3,00 -2,00 -1,00 0,00 0 500 1000 1500 2000 Load [KN] Uy[mm] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Y X End of external bracket displacement -8,00 -7,00 -6,00 -5,00 -4,00 -3,00 -2,00 -1,00 0,00 0 500 1000 1500 2000 Load [KN] Uy[mm] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Y X Y X Y X www.francobontempi.org
  27. 27. 27 Local response >290 <-290 >290 <-290 >290 <-290 www.francobontempi.org
  28. 28. 28 EVOLUTION OF THE FORM (1) 600.0 250.0 15.0 60.2 70.0 145.0 56° 66° 50° 378.5 188.0 320.1 www.francobontempi.org
  29. 29. 29 EVOLUTION OF THE FORM (2) 600.0 369.4 55° 66° 50° 224.4 15.0 60.0 70.0 145.0 280.0 399.4 126.0 100.8 195.0 230.7 188.0 69.7 www.francobontempi.org
  30. 30. 30 EVOLUTION OF THE FORM (3) Versione f www.francobontempi.org
  31. 31. 31 CONSTRUCTABILITY (1)www.francobontempi.org
  32. 32. 32 CONSTRUCTABILITY (2)www.francobontempi.org
  33. 33. 33 CONSTRUCTABILITY (3)www.francobontempi.org
  34. 34. 34 CONSTRUCTABILITY (3)www.francobontempi.org
  35. 35. EXTENDED ANALYSIS Detailed assessment www.francobontempi.org
  36. 36. 36 THREE-DIMENSIONAL GEOMETRY www.francobontempi.org
  37. 37. 37 Results for concrete core and steel frame www.francobontempi.org
  38. 38. 38 Results for steel bottom frame and attacment www.francobontempi.org
  39. 39. 39 EXTERNAL PART www.francobontempi.org
  40. 40. 40 www.francobontempi.org
  41. 41. 41 www.francobontempi.org
  42. 42. 42 MODELS OF EXTERNAL PART www.francobontempi.org
  43. 43. 43 BASIC FORM www.francobontempi.org
  44. 44. 44 IMPROVEMENTS www.francobontempi.org
  45. 45. 45 ENHANCED FORM www.francobontempi.org
  46. 46. 46 COMPRESSION ONLY CONTACT www.francobontempi.org
  47. 47. NEXT STEP Two way beam support www.francobontempi.org
  48. 48. 48 TWO WAY SUPPORT (1) www.francobontempi.org
  49. 49. 49 TWO WAY SUPPORT (2) www.francobontempi.org
  50. 50. 50 ENHANCHED 2WAY SUPPORT www.francobontempi.org
  51. 51. 51 CONCLUSIONS • The evolution of the design of a bracket component, supported by a cable-stayed system, is presented. • This apparently simple element conceals a rather complex structural geometry, developed to be suitable both for strength requirements and constructability. The so devised solution can assure: – Manufacturing of precast elements without exterior parts; – Minimal size of the bracket and completely hidden insertion in the supported beams; – Compliance with different standards. • The evolution of the leading concepts and of the geometry of this element is explained together with the numerical analysis obtained both by synthetic models, like strut & tie, and by full non linear finite element models. www.francobontempi.org
  52. 52. Str o N GER www.stronger2012.com 52
  53. 53. ADETTAGLI BASE www.francobontempi.org
  54. 54. 54 INDEX PART 1 Basis of the Problem Strut & Tie Modeling Finite Element Analysis by Substrucuring Technique and S&T Improvement Strategies Models and Programs Validation www.francobontempi.org
  55. 55. 55 INDEX PART 2 Thickness Improvement Shaping Results for Shaping Type B www.francobontempi.org
  56. 56. PART 0 Synthesis www.francobontempi.org
  57. 57. 57 Vsd [kN] thickNess (th) [mm] 600 8 850 10 1050 12 1500 18 SCENARIOUS Lateral Plate Original Optimized Shaped Weight (kg) 9,6 9,1 9,9 www.francobontempi.org
  58. 58. 58 STRUCTURAL RESPONSE (I) Upper edge displacement 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0 500 1000 1500 2000 Load [KN] Ux[mm] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Y X www.francobontempi.org
  59. 59. 59 Y X Centre of Diaphram 0,0 50,0 100,0 150,0 200,0 250,0 0 500 1000 1500 2000 Load [KN] Stress_x[MPa] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Centre of Diaphram 0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12% 0 500 1000 1500 2000 Load [KN] TotalStrain_x Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Centre of Diaphram 0,0 50,0 100,0 150,0 200,0 250,0 0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12% Total Strain_x Stress_x[MPa] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm STRUCTURAL RESPONSE (II)www.francobontempi.org
  60. 60. 60 End of external bracket displacement -8,00 -7,00 -6,00 -5,00 -4,00 -3,00 -2,00 -1,00 0,00 0 500 1000 1500 2000 Load [KN] Uy[mm] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Y X STRUCTURAL RESPONSE (III)www.francobontempi.org
  61. 61. 61 ALTERNATIVE GEOMETRIC CONFIGURATIONS TIPO B 1 2 3 450° 31° 288.8 83.2 69.0 30.0 TYPE B www.francobontempi.org
  62. 62. 62 Vsd = 600 kN SYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 >290 <-290 von MISES www.francobontempi.org
  63. 63. 63 Vsd = 600 kN ASYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  64. 64. 64 Vsd = 850 kN SYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  65. 65. 65 Vsd = 850 kN ASYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  66. 66. 66 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  67. 67. 67 Vsd = 1050 kN ASYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  68. 68. 68 Vsd = 1500 kN SYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  69. 69. 69 Vsd = 1500 kN ASYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  70. 70. PART 1 Framework of the structural problem www.francobontempi.org
  71. 71. BASIS OF THE PROBLEM www.francobontempi.org
  72. 72. 72 DESIGN CRITERIA • SIMPLICITY: 1. the load path from the loading appliction points to the main internal region of the structural element must be the simplest and the quitest; it means that – the stress flow should be regular; – stress concentrations should be avoided; – the loading transfer should prefer direct placement; – integration between steel parts and concrete must be accurate and anchorage truthful; • DEPENDABILITY; www.francobontempi.org
  73. 73. 73 PERFORMANCE CRITERIA (i) • Ultimate Limit State: 1. strength verified by partial safety factors disequations; there are admitted yielded parts of the bracket and damaged portions of the concrete in the structural element; – the strength capacity will be verified by non linear analysis, starting from unloaded to collapse loading; www.francobontempi.org
  74. 74. 74 PERFORMANCE CRITERIA (ii) • Serviceability Limit State: 1. the structural behavior should be elastic- linear until an adequate loading level (usually, the ultimate loading level / 1.5); – in particular, steel parts must not be yielded anywhere and the concrete must experience a low stress level; 2. the displacements of the bracket for service loading must be limited; www.francobontempi.org
  75. 75. 75 PERFORMANCE CRITERIA (iii) • Structural Robustness: 1. the connection device failure should develop after major failure of the structural elemnt at which the connection device is inserted; 2. the connection device must be able to support the failure of one of the external ties, i.e. each tie and directly connected parts must be able anyway to support the double of the service limit loading; www.francobontempi.org
  76. 76. 76 tie-rod frame tie shield tie junction closure plate C junction bottom rib external plate external bracket rigid block adjacent concrete STRUCTURAL PARTSwww.francobontempi.org
  77. 77. 77 LOADING SYSTEMS: SYM. vs ASYM. Reinforcement Bars Vsd Reinforcement Bars Vsd www.francobontempi.org
  78. 78. 78 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 -2000 0 2000 4000 6000 8000 10000 N M SYM ASYM M [kNm] compression N [kN] tension stirrups longitudinal bars As=5 ø 22 As’=5 ø 22 ø 8/2b 9 cm COLUMN REINFORCEMENT DESIGN Reinforcement ACTION N [kN] M [kNm] SYM 2100 0 ASYM 1050 462 50 cm 60 cm
  79. 79. 79 STRUCTURAL MODELING (i) • A slice of half column is considered (plane stress assumption) column a Vsd Vsd a/2 Vsd*=Vsd/2 Vsd* =Vsd/2 www.francobontempi.org
  80. 80. STRUT & TIE MODELING www.francobontempi.org
  81. 81. 81 STRUCTURAL MODELING (model #1) Strut & Tie modeling of the stayed bracket STEP #1 STEP #2 STEP #3 STEP #4 www.francobontempi.org
  82. 82. 82 STRUCTURAL MODELING (model #2) Alternative S&T modeling of the stayed bracket STEP #1 STEP #3 STEP #4 STEP #2 www.francobontempi.org
  83. 83. 83 STRUCTURAL MODELING (model #3) Alternative S&T modeling of the stayed bracket STEP #1 STEP #3 STEP #4 STEP #2 www.francobontempi.org
  84. 84. 84 STRUCTURAL MODELING OF CONCRETE PART (I): trusswork discretization ab lslAA a bsaAA b asbAA ba ba ba dd yy xx 2 2 2 2 2 8 3 2 3 8 3 2 3 8 3 2 , , ,                                         www.francobontempi.org
  85. 85. 85 4321 ,,, uuuu VIVIVIIIIII NNNNNN ,,,,, a x y ux     b y y vy     abx v y u yx       b l aNNNN N VIVIII x            a l bNNNN N VIVIVIII y            l NNN VIV xy  xyyx NNN ,, STRUCTURAL MODELING OF CONCRETE PART (II): stress representation www.francobontempi.org
  86. 86. 86 LOADING SYSTEMS: SYM. Reinforcment Bars Vsd C + SteelCSteel VsdVsd www.francobontempi.org
  87. 87. 87 LOADING SYSTEMS: ASYM. Reinforcment Bars C + SteelCSteel Vsd Vsd www.francobontempi.org
  88. 88. Model S&T #1 Results for SYM loading system www.francobontempi.org
  89. 89. 89 Vsd = 1050 kN – cap element stress • max tension = 389,7 MPa • min compression = -232,5 MPa • tension = 582,7 MPa
  90. 90. 90 Vsd = 1050 kN – reinforcement bar stress • max tension = 96,3 MPa • min compression = -59,1 MPa stirrups longitudinal www.francobontempi.org
  91. 91. 91 Vsd = 1050 kN – concrete stress • max tension = 0 MPa • min compression = -17,7 MPa www.francobontempi.org
  92. 92. Model S&T #1 Results for ASYM loading system www.francobontempi.org
  93. 93. 93 Vsd = 1050 kN – cap element stress • max tension = 228,1 MPa • min compression = -424,3 MPa • tension = 582,7 MPa www.francobontempi.org
  94. 94. 94 Vsd = 1050 kN – reinforcement bar stress stirrups longitudinal • max tension = 280,9 MPa • min compression = -125,4 MPa
  95. 95. 95 Vsd = 1050 kN – concrete stress • max tension = 0 MPa • min compression = -25,1 MPa www.francobontempi.org
  96. 96. Model S&T #2 Results for SYM loading system www.francobontempi.org
  97. 97. 97 Vsd = 1050 kN – cap element stress • max tension = 422,1 MPa • min compression = -295,7 MPa• tension = 582,7 MPa www.francobontempi.org
  98. 98. 98 Vsd = 1050 kN – reinforcement bar stress stirrups longitudinal • max tension = 143,9 MPa • min compression = -49,4 MPa www.francobontempi.org
  99. 99. 99 Vsd = 1050 kN – concrete stress • max tension = 0 MPa • min compression = -19,8 MPa www.francobontempi.org
  100. 100. Model S&T #2 Results for ASYM loading system www.francobontempi.org
  101. 101. 101 Vsd = 1050 kN – cap element stress • max tension = 631,8 MPa • min compression = -718,7 MPa• tension = 582,7 MPa www.francobontempi.org
  102. 102. 102 Vsd = 1050 kN – reinforcement bar stress • max tension = 331,3 MPa • min compression = -115,5 MPa www.francobontempi.org
  103. 103. 103 Vsd = 1050 kN – concrete stress • max tension = 0 MPa • min compression = -23,1 MPa www.francobontempi.org
  104. 104. Model S&T #3 Results for SYM loading system www.francobontempi.org
  105. 105. 105 Vsd = 1050 kN – cap element stress • max tension = 380,1 MPa • min compression = -303,7 MPa• tension = 582,7 MPa www.francobontempi.org
  106. 106. 106 Vsd = 1050 kN – reinforcement bar stress stirrups longitudinal • max tension = 120 MPa • min compression = -83,6 MPa www.francobontempi.org
  107. 107. 107 Vsd = 1050 kN – concrete stress • max tension = 0 MPa • min compression = -28,8 MPa www.francobontempi.org
  108. 108. Sinthesis of the Results for S&T Models www.francobontempi.org
  109. 109. 109 SUMMARY OF RESULTS (SYM) Vsd = 1050 kN SYM Vsd= 1050 kN Limit Model 1 2 3 Design SMAXBIEL [N/mm^2] 582,71 582,71 582,71 580 TENSION [kN] 696,1 696,1 696,1 SMAXTEL [N/mm^2] 389,75 422,02 380,1 290 TENSION [kN] 423,2 458,3 412,8 SMINTEL [N/mm^2] -232,46 -295,7 -303,68 -290 SMAXSTAF [N/mm^2] 96,3 143,86 120,02 374 SMINSTAF [N/mm^2] -0,02 29,99 -24,88 -374 SMAXLONG [N/mm^2] -52,93 -36,34 -48,85 374 SMINLONG [N/mm^2] -59,16 -49,41 -83,6 -374 SMAXCLS [N/mm^2] 0 0 0 1,5 SMINCLS [N/mm^2] -17,72 -19,84 -28,8 -28 www.francobontempi.org
  110. 110. 110 SUMMARY OF RESULTS (ASYM) Vsd = 1050 kN ASYM Vsd= 1050 kN Limit Model 1 2 Design SMAXBIEL [N/mm^2] 582,71 582,71 580 TENSIONE [kN] 696,1 696,1 SMAXTEL [N/mm^2] 228,09 631,84 290 TENSION [kN] 305,18 341,2 SMINTEL [N/mm^2] -424,31 -718,65 -290 SMAXSTAF [N/mm^2] 164,65 297,32 374 SMINSTAF [N/mm^2] 1,75 0 -374 SMAXLONG [N/mm^2] 280,92 331,34 374 SMINLONG [N/mm^2] -125,4 -115,55 -374 SMAXCLS [N/mm^2] 0 0 1,5 SMINCLS [N/mm^2] -25,08 -23,11 -28 www.francobontempi.org
  111. 111. 111 Legenda Output Descrizione Valore di Design [N/mm^2] SMAXBIEL tensione massima negli elementi rappresentanti i tiranti 580 SMAXTEL tensione massima negli elementi rappresentanti il telaio 290 SMINTEL tensione minima negli elementi rappresentanti il telaio -290 SMAXSTAF tensione massima negli elementi rappresentanti le armature lente secondarie del pilastro 374 SMINSTAF tensione massima negativa negli elementi rappresentanti le armature lente secondarie del pilastro - 374 SMAXLONG tensione massima negli elementi rappresentanti le armature lente principali del pilastro 374 SMINLONG tensione massima negativa negli elementi rappresentanti le armature lente principali del pilastro - 374 SMAXCA tensione massima negli elementi rappresentanti il calcestruzzo 1,5 SMINCA tensione massima negativa negli elementi rappresentanti il calcestruzzo -28 www.francobontempi.org
  112. 112. FINITE ELEMENT ANALYSIS BY SUBSTRUCTING TECHNIQUE AND S&T www.francobontempi.org
  113. 113. 113 STRUCTURAL MODELING Reinforcement www.francobontempi.org
  114. 114. 114 STRUCTURAL MODELING: CAPwww.francobontempi.org
  115. 115. 115 RIGID LINKS BEAM ELEMENTS STRUCTURAL MODELING: LINKSwww.francobontempi.org
  116. 116. ELASTIC MODELS www.francobontempi.org
  117. 117. 117 Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATION
  118. 118. 118 Vsd = 1050 kN – cap element stress: elastic analysis (stress X) >290 <-290
  119. 119. 119 Vsd = 1050 kN – cap element stress: elastic analysis (stress Y) >290 <-290
  120. 120. 120 >290 <-290 Vsd = 1050 kN – cap element stress: elastic analysis (Von Mises) (I) www.francobontempi.org
  121. 121. 121 Vsd = 1050 kN – cap element stress: elastic analysis (Von Mises) (II) >580 <-580 www.francobontempi.org
  122. 122. 122 Vsd = 1050 kN – reinforcement bar stress stirrups longitudinal • max tension = 96,6 MPa • min compression = -61,3 MPa www.francobontempi.org
  123. 123. 123 concrete • max tension = 0 MPa • min compression = -18,2 MPa • tension = 582,7 MPa Vsd = 1050 kN – ties and concrete stresswww.francobontempi.org
  124. 124. 124 SUMMARY OF RESULTS (SYM) Vsd= 1050 kN SIMM Vsd= 1050 kN Limit Model 1 substruct Design SMAXBIEL [N/mm^2] 582,71 582,72 580 TENSION [kN] 696,1 696,1 SMAXTEL (SMTEL_x) [N/mm^2] 389,75 653,2 290 TENSION [kN] 423,2 388,07 only “substructured” SMTEL_y [N/mm^2] 291,5 290 only “model 1” SMINTEL [N/mm^2] -232,46 -290 only “substructured” SmTEL_x [N/mm^2] -530,4 -290 only “substructured” SmTEL_y [N/mm^2] -641,62 -290 SMAXSTAF [N/mm^2] 96,3 90,32 374 SMINSTAF [N/mm^2] -0,02 -6,93 - 374 SMAXLONG [N/mm^2] -52,93 -55,52 374 SMINLONG [N/mm^2] -59,16 -61,29 - 374 SMAXCLS [N/mm^2] 0 0 1,5 SMINCLS [N/mm^2] -17,72 -18,21 -28 Linear elastic Steel www.francobontempi.org
  125. 125. ELASTO-PLASTIC MODELS www.francobontempi.org
  126. 126. 126 ELASTIC- PLASTIC MATERIAL LAW WITH VON MISES CRITERION 62519.4 ]N/mm[10000 max 2 max     00138.0 ]N/mm[290 2   y y   ][N/mm210000 2 0 E *100/1 01 EE    x10^(-3) E0 E1 y y max www.francobontempi.org
  127. 127. 127 >290 <-290 Vsd = 1050 kN – cap element stress: e-plastic analysis (stress X) www.francobontempi.org
  128. 128. 128 >290 <-290 Vsd = 1050 kN – cap element stress: e-plastic analysis (stress Y) www.francobontempi.org
  129. 129. 129 >290 <-290 Vsd = 1050 kN – cap element stress: e-plastic analysis (Von Mises) (I) www.francobontempi.org
  130. 130. 130 >580 <-580 Vsd = 1050 kN – cap element stress: e-plastic analysis (Von Mises) (II) www.francobontempi.org
  131. 131. 131 Vsd = 1050 kN – cap element strain: e-plastic analysis (Von Mises strain) www.francobontempi.org
  132. 132. 132 Vsd = 1050 kN – reinforcement bar stress • max tension = 132 MPa • min compression = -54,9 MPa stirrups longitudinal www.francobontempi.org
  133. 133. 133 Vsd = 1050 kN – ties and concrete stress concrete • max tension = 0 MPa • min compression = -19,8 MPa • tension = 582,7 MPa www.francobontempi.org
  134. 134. 134 SUMMARY OF RESULTS (SYM) Vsd= 1050 kN SIMM Vsd= 1050 kN Limit Model elastic e-plastic Design SMAXBIEL [N/mm^2] 582,72 582,72 580 TENSION [kN] 696,1 696,1 SMTEL_x [N/mm^2] 653,2 560 290 TENSION [kN] 388,07 371,09 SMTEL_y [N/mm^2] 291,5 324,26 290 SmTEL_x [N/mm^2] -530,4 -515,65 -290 SmTEL_y [N/mm^2] -641,62 -632,07 -290 SMAXSTAF [N/mm^2] 90,32 122,93 374 SMINSTAF [N/mm^2] -6,93 15,55 - 374 SMAXLONG [N/mm^2] -55,52 -42,81 374 SMINLONG [N/mm^2] -61,29 -54,89 - 374 SMAXCLS [N/mm^2] 0 0 1,5 SMINCLS [N/mm^2] -18,21 -19,77 -28 elastic steel e-plastic steel www.francobontempi.org
  135. 135. 135 -25 -20 -15 -10 -5 0 0 200 400 600 800 1000 1200 Load Uy Load application Structural response (1)www.francobontempi.org
  136. 136. 136 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 0 200 400 600 800 1000 1200 Load Ux Spigolo alto Structural response (2)www.francobontempi.org
  137. 137. 137 0,000 0,001 0,001 0,002 0,002 0,003 0 200 400 600 800 1000 1200 Load ElasticStrain_x Centre of Diaphram -0,010 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0 200 400 600 800 1000 1200 Load PlasticStrain_x Centre of Diaphram 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0 200 400 600 800 1000 1200 Load TotalStrain_x Centre of Diaphram Structural response (3)www.francobontempi.org
  138. 138. 138 0 50 100 150 200 250 300 350 400 450 0,0000 0,0100 0,0200 0,0300 0,0400 0,0500 0,0600 Total Strain_x Stress_x Centre of Diaphram 0 50 100 150 200 250 300 350 400 450 0 200 400 600 800 1000 1200 Load Stress_x Centre of Diaphram 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0 200 400 600 800 1000 1200 Load TotalStrain_x Centre of Diaphram Structural response (4) www.francobontempi.org
  139. 139. 139 C + SteelCSteel Vsd ASYMMETRIC CONFIGURATION Reinforcement Bars Vsd e-plastic steel
  140. 140. 140 Vsd = 1050 kN – cap element stress e-plastic analysis (stress X) >290 <-290 www.francobontempi.org
  141. 141. 141 Vsd = 1050 kN – cap element stress e-plastic analysis (stress Y) >290 <-290 www.francobontempi.org
  142. 142. 142 >290 <-290 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (I) www.francobontempi.org
  143. 143. 143 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (II) >580 <-580 www.francobontempi.org
  144. 144. 144 Vsd = 1050 kN – reinforcement bar stress • max tension = 348,9 MPa • min compression = -116,1 MPa stirrups longitudinal www.francobontempi.org
  145. 145. 145 • max tension = 0 MPa • min compression = -23,5 MPa • tension = 582,7 MPa Vsd = 1050 kN – ties and concrete stress concrete www.francobontempi.org
  146. 146. IMPROVEMENT STRATEGIES www.francobontempi.org
  147. 147. 147 COMMENTS • The actual configuration of the Stayed Bracket seems to be not able in sustaining adequately the load of Vsd=1050 kN both in symmetric and asymmetric load scenarios. • In general, the frame stresses are greater than the yielding values, also if they are less than the failure values. • The amplitude of the yielded zone suggest to adopt strategies to improve the stayed bracket performances: Strategy 1: improve the frame thickNess Strategy 2: improve the frame size Strategy 3: downloading www.francobontempi.org
  148. 148. 148 Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATIONwww.francobontempi.org
  149. 149. 149 th0 Strategy 1: improve the frame thickNess Actual Improved th1 www.francobontempi.org
  150. 150. 150 Vsd = 1050 kN – cap element stress e-plastic analysis (stress X) >290 <-290 Strategy 1: improve the frame thickNess Actual thickNess th = 6 mm Improved thickNess th = 10 mm www.francobontempi.org
  151. 151. 151 Vsd = 1050 kN – cap element stress e-plastic analysis (stress Y) Strategy 1: improve the frame thickNess >290 <-290 Actual thickNess th = 6 mm Improved thickNess th = 10 mm www.francobontempi.org
  152. 152. 152 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (I) >290 <-290 Actual thickNess th = 6 mm Strategy 1: improve the frame thickNess Improved thickNess th = 10 mm www.francobontempi.org
  153. 153. 153 >580 <-580 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (II) Actual thickNess th = 6 mm Strategy 1: improve the frame thickNess Improved thickNess th = 10 mm www.francobontempi.org
  154. 154. 154 Vsd = 1050 kN – cap element strain – e- plastic analysis (Von Mises strain) Strategy 1: improve the frame thickNess Actual thickNess th = 6 mm Improved thickNess th = 10 mm
  155. 155. 155 Vsd = 1050 kN – cap element strain e-plastic analysis (Von Mises strain) Improved thickNess th = 10 mm www.francobontempi.org
  156. 156. 156 >580 <-580 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) th = 10mm www.francobontempi.org
  157. 157. 157 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) >290 <-290 th = 10mm www.francobontempi.org
  158. 158. 158 h0 h1 Strategy 2: improve the frame size Actual Improved www.francobontempi.org
  159. 159. 159 Vsd = 1050 kN – cap element stress e-plastic analysis (stress X) >290 <-290 Strategy 2: improve the frame size Actual size h = 145 mm Improved size h = 200 mm www.francobontempi.org
  160. 160. 160 Vsd = 1050 kN – cap element stress e-plastic analysis (stress Y) >290 <-290 Strategy 2: improve the frame size Actual size h = 145 mm Improved size h = 200 mm www.francobontempi.org
  161. 161. 161 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (I) >290 <-290 Strategy 2: improve the frame size Actual size h = 145 mm Improved size h = 200 mm www.francobontempi.org
  162. 162. 162 >580 <-580 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (II) Strategy 2: improve the frame size Actual size h = 145 mm Improved size h = 200 mm www.francobontempi.org
  163. 163. 163Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATION Vsd = 850 kN thickNess: th = 6 mm Strategy 3: downloading www.francobontempi.org
  164. 164. 164 Vsd = 850/1050 kN – cap element stress e-plastic analysis (Von Mises) Vsd = 850 kN Vsd = 1050 kN www.francobontempi.org
  165. 165. 165 Vsd = 850/1050 kN – cap element stress e-plastic analysis (Von Mises) Vsd = 850 kN 386 N/mm^2MAX in questa zona Vsd = 1050 kN 560 N/mm^2
  166. 166. 166 Vsd = 850/1050 kN – cap element strain – e-plastic analysis (Von Mises) Vsd = 850 kN Vsd = 1050 kNLa scala è diversa www.francobontempi.org
  167. 167. 167 SYM_Vsd = 850 kN Stress e-plastic analysis (Von Mises) Strain e-plastic analysis (Von Mises) th = 10 mmwww.francobontempi.org
  168. 168. MODELS & PROGRAMS VALIDATIONS www.francobontempi.org
  169. 169. 169 COMPARISON BETWEEN TWO F.E. PROGRAMS www.francobontempi.org
  170. 170. 170 >290 <-290 Vsd = 1050 kN – cap element stress e-plastic analysis (stress X) >290 <-290 www.francobontempi.org
  171. 171. 171 Vsd = 1050 kN – cap element stress e-plastic analysis (stress Y) >290 <-290 >290 <-290 www.francobontempi.org
  172. 172. 172 >290 <-290 >290 <-290 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (I) www.francobontempi.org
  173. 173. 173 >580 <-580 Vsd = 1050 kN – cap element stress e-plastic analysis (Von Mises) (II) >580 <-580 www.francobontempi.org
  174. 174. 174 Upper edge displacement 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 0 200 400 600 800 1000 1200 Load [KN] Ux[mm] ANSYS STRAUS Y X STRUCTURAL RESPONSE COMPARISON (I) www.francobontempi.org
  175. 175. 175 Centre of Diaphram 0,0 50,0 100,0 150,0 200,0 250,0 300,0 350,0 400,0 450,0 0 200 400 600 800 1000 1200 Load [KN] Stress_x[MPa] ANSYS STRAUS Y X Centre of Diaphram 0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00% 0 200 400 600 800 1000 1200 Load [KN] TotalStrain_x ANSYS STRAUS Centre of Diaphram 0,0 50,0 100,0 150,0 200,0 250,0 300,0 350,0 400,0 450,0 0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00% Total Strain_x Stress_x[MPa] ANSYS STRAUS STRUCTURAL RESPONSE COMPARISON (II)www.francobontempi.org
  176. 176. 176 End of external bracket displacement -25,00 -20,00 -15,00 -10,00 -5,00 0,00 0 200 400 600 800 1000 1200 Load [KN] Uy[mm] ANSYS STRAUS STRUCTURAL RESPONSE COMPARISON (III) www.francobontempi.org
  177. 177. PART 2 Solutions for the structural problem www.francobontempi.org
  178. 178. THICKNESS IMPROVEMENT www.francobontempi.org
  179. 179. 179 Vsd [kN] thickNess (th) [mm] 600 8 850 10 1050 12 1500 18 SCENARIOS www.francobontempi.org
  180. 180. 180 th0 Strategy 1: improve the frame thickNess Actual Improved th www.francobontempi.org
  181. 181. th= 8 mm Vsd = 600 kN www.francobontempi.org
  182. 182. 182 Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATION e-plastic Steel www.francobontempi.org
  183. 183. 183 >290 <-290 Vsd = 600 kN SYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  184. 184. 184 >580 <-580 Vsd = 600 kN SYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  185. 185. 185 C + SteelCSteel Vsd ASYMMETRIC CONFIGURATION Reinforcement Bars Vsd e-plastic Steel www.francobontempi.org
  186. 186. 186 >290 <-290 Vsd = 600 kN ASYM th = 8 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  187. 187. 187 >580 <-580 Vsd = 600 kN ASYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II
  188. 188. th= 10 mm Vsd = 850 kN www.francobontempi.org
  189. 189. 189 Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATION e-plastic Steel www.francobontempi.org
  190. 190. 190 >290 <-290 Vsd = 850 kN SYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  191. 191. 191 >580 <-580 Vsd = 850 kN SYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  192. 192. 192 C + SteelCSteel Vsd ASYMMETRIC CONFIGURATION Reinforcement Bars Vsd e-plastic Steel www.francobontempi.org
  193. 193. 193 >290 <-290 Vsd = 850 kN ASYM th = 10 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  194. 194. 194 >580 <-580 Vsd = 850 kN ASYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  195. 195. th = 12 mm Vsd = 1050 kN www.francobontempi.org
  196. 196. 196 Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATION e-plastic Steel www.francobontempi.org
  197. 197. 197 >290 <-290 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  198. 198. 198 >580 <-580 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  199. 199. 199 C + SteelCSteel Vsd ASYMMETRIC CONFIGURATION Reinforcement Bars Vsd e-plastic Steel www.francobontempi.org
  200. 200. 200 >290 <-290 Vsd = 1050 kN ASYM th = 12 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X
  201. 201. 201 >580 <-580 Vsd = 1050 kN ASYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  202. 202. th = 18 mm Vsd = 1500 kN www.francobontempi.org
  203. 203. 203 Reinforcement Vsd Vsd C + SteelCSteel Vsd SYMMETRIC CONFIGURATION e-plastic Steel
  204. 204. 204 >290 <-290 Vsd = 1500 kN SYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  205. 205. 205 >580 <-580 Vsd = 1500 kN SYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  206. 206. 206 C + SteelCSteel Vsd ASYMMETRIC CONFIGURATION Reinforcement Bars Vsd e-plastic Steel www.francobontempi.org
  207. 207. 207 >290 <-290 Vsd = 1500 kN ASYM th = 18 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  208. 208. 208 >580 <-580 Vsd = 1500 kN ASYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  209. 209. 209 Summary for Proposed ThickNess: von Mises stress / SYM / e-plastic analysis >290 <-290 Vsd=1050 kN th=12 mm Vsd=1500 kN th=18 mm Vsd=600 kN th=8 mm Vsd=850 kN th=10 mm www.francobontempi.org
  210. 210. 210 Y X Upper edge displacement 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0 500 1000 1500 2000 Load [KN] Ux[mm] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm STRUCTURAL RESPONSE (I) www.francobontempi.org
  211. 211. 211 Y X Centre of Diaphram 0,0 50,0 100,0 150,0 200,0 250,0 0 500 1000 1500 2000 Load [KN] Stress_x[MPa] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Centre of Diaphram 0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12% 0 500 1000 1500 2000 Load [KN] TotalStrain_x Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Centre of Diaphram 0,0 50,0 100,0 150,0 200,0 250,0 0,00% 0,02% 0,04% 0,06% 0,08% 0,10% 0,12% Total Strain_x Stress_x[MPa] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm STRUCTURAL RESPONSE (II)www.francobontempi.org
  212. 212. 212 End of external bracket displacement -8,00 -7,00 -6,00 -5,00 -4,00 -3,00 -2,00 -1,00 0,00 0 500 1000 1500 2000 Load [KN] Uy[mm] Vsd=600 KN - th=8mm Vsd=850 KN - th=10mm Vsd=1050 KN - th=12mm Vsd=1500 KN - th=18mm Y X STRUCTURAL RESPONSE (III) www.francobontempi.org
  213. 213. SHAPING www.francobontempi.org
  214. 214. 214 30.0 69.0 83.2 288.8 TIPO C 1 195.0 25.2 31° 50° 4 32 ALTERNATIVE CONFIGURATIONS TIPO A 31° 50° 4 32 1 30.0 90.0 83.2 288.8 TIPO B 1 2 3 450° 31° 288.8 83.2 69.0 30.0 ACTUAL TYPE B TYPE C TYPE AACTUAL www.francobontempi.org
  215. 215. 215 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES Actual Tipo A TYPE A www.francobontempi.org
  216. 216. 216 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES Actual Tipo B TYPE B www.francobontempi.org
  217. 217. 217 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES Actual Tipo C TYPE C www.francobontempi.org
  218. 218. RESULTS FOR SHAPING TYPE B www.francobontempi.org
  219. 219. 219 ALTERNATIVE GEOMETRIC CONFIGURATIONS TIPO B 1 2 3 450° 31° 288.8 83.2 69.0 30.0 TYPE B www.francobontempi.org
  220. 220. th = 8 mm Vsd =600 kN www.francobontempi.org
  221. 221. 221 >290 <-290 Vsd = 600 kN SYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  222. 222. 222 >580 <-580 Vsd = 600 kN SYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 von MISES I von MISES II www.francobontempi.org
  223. 223. 223 Vsd = 600 kN SYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 >290 <-290 von MISES www.francobontempi.org
  224. 224. 224 >290 <-290 Vsd = 600 kN ASYM th = 8 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  225. 225. 225 Vsd = 600 kN ASYM th = 8 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  226. 226. th = 10 mm Vsd = 850 kN www.francobontempi.org
  227. 227. 227 >290 <-290 Vsd = 850 kN SYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  228. 228. 228 Vsd = 850 kN SYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  229. 229. 229 >290 <-290 Vsd = 850 kN ASYM th = 10 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  230. 230. 230 Vsd = 850 kN ASYM th = 10 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  231. 231. th= 12 mm Vsd = 1050 kN www.francobontempi.org
  232. 232. 232 >290 <-290 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  233. 233. 233 Vsd = 1050 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  234. 234. 234 >290 <-290 Vsd = 1050 kN ASYM th = 12 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  235. 235. 235 Vsd = 1050 kN ASYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  236. 236. th = 18 mm Vsd = 1500 kN www.francobontempi.org
  237. 237. 237 >290 <-290 Vsd = 1500 kN SYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  238. 238. 238 Vsd = 1500 kN SYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  239. 239. 239 >290 <-290 Vsd = 1500 kN ASYM th = 18 mm cap element stress / e-plastic analysis STRESS Y >290 <-290 STRESS X www.francobontempi.org
  240. 240. 240 Vsd = 1500 kN ASYM th = 18 mm cap element stress / e-plastic analysis >290 <-290 von MISES www.francobontempi.org
  241. 241. RESULTS FOR STRUCTURAL ROBUSTNESS www.francobontempi.org
  242. 242. th = 12 mm Vsd = 1050*1,33 kN = 1396 kN www.francobontempi.org
  243. 243. 243 >290 <-290 Vsd = 1050*1,33= 1396,5 kN SYM th = 12 mm cap element stress / e-plastic analysis >290 <-290 STRESS Y STRESS X www.francobontempi.org
  244. 244. 244 >290 <-290 von MISES I Vsd = 1050*1,33= 1396,5 kN SYM th = 12 mm cap element stress / e-plastic analysis >580 <-580 von MISES II www.francobontempi.org
  245. 245. B3D
  246. 246. 246 ANALISI E VERIFICHE STRUTTURALI DELLE CONFIGURAZIONI per Vsd = 1050 Kn IN PRESENZA DI PLUVIALE / A 2 VIE ISOTROPA Dicembre 2007 www.francobontempi.org
  247. 247. INFLUENZA DELLA PRESENZA DEL PLUVIALE Vsd = 1050 Kn www.francobontempi.org
  248. 248. 248 Definizione del modello (1) www.francobontempi.org
  249. 249. 249 Definizione del modello (2) www.francobontempi.org
  250. 250. 250 Definizione del modello (3)
  251. 251. 251 Definizione del modello (4) www.francobontempi.org
  252. 252. 252 Definizione del modello (5) www.francobontempi.org
  253. 253. 253 Stato di sforzo nel conglomerato (1) Sforzi verticali www.francobontempi.org
  254. 254. 254 Stato di sforzo nel conglomerato (2) Sforzi verticali www.francobontempi.org
  255. 255. 255 Stato di sforzo nel conglomerato (3) Sforzi verticali www.francobontempi.org
  256. 256. 256 Stato di sforzo nel conglomerato (4) Sforzi verticali www.francobontempi.org
  257. 257. 257 Stato di sforzo nel conglomerato (5) Sforzi verticali www.francobontempi.org
  258. 258. 258 Stato di sforzo nel conglomerato (6) www.francobontempi.org
  259. 259. 259 Stato di sforzo nel conglomerato (7) www.francobontempi.org
  260. 260. 260 Stato di sforzo nel conglomerato (8) www.francobontempi.org
  261. 261. 261 Stato di sforzo nel conglomerato (9) www.francobontempi.org
  262. 262. 262 Stato di sforzo nel conglomerato (10) www.francobontempi.org
  263. 263. 263 Stato di sforzo nel conglomerato (11!) Von Mises ! www.francobontempi.org
  264. 264. 264 Stato di sforzo nel conglomerato (12!) Von Mises ! www.francobontempi.org
  265. 265. 265 Stato di sforzo nei piatti verticali (1) www.francobontempi.org
  266. 266. 266 Stato di sforzo nei piatti verticali (2) www.francobontempi.org
  267. 267. 267 Stato di sforzo nei piatti verticali (3) www.francobontempi.org
  268. 268. 268 Stato di sforzo nei piatti di chiusura www.francobontempi.org
  269. 269. 269 Stato di sforzo negli attacchi a C www.francobontempi.org
  270. 270. CONFIGURAZIONE A 2 VIE ISOTROPA Vsd = 1050 Kn www.francobontempi.org
  271. 271. 271 Definizione del modello (1) www.francobontempi.org
  272. 272. 272 Definizione del modello (2) www.francobontempi.org
  273. 273. 273 Definizione del modello (3) www.francobontempi.org
  274. 274. 274 Definizione del modello (4) www.francobontempi.org
  275. 275. 275 Discretizzazione conglomerato www.francobontempi.org
  276. 276. 276 Discretizzazione piatti verticali www.francobontempi.org
  277. 277. 277 Discretizzazione singolo piatto verticale www.francobontempi.org
  278. 278. 278 Discretizzazione piatti chiusura www.francobontempi.org
  279. 279. 279 Stato di sforzo nel conglomerato (1) Sforzi verticali www.francobontempi.org
  280. 280. 280 Stato di sforzo nel conglomerato (2) Sforzi verticali www.francobontempi.org
  281. 281. 281 Stato di sforzo nel conglomerato (3) Sforzi verticali www.francobontempi.org
  282. 282. 282 Stato di sforzo nel conglomerato (4) Sforzi verticali www.francobontempi.org
  283. 283. 283 Stato di sforzo nel conglomerato (5) Sforzi verticali www.francobontempi.org
  284. 284. 284 Stato di sforzo nel conglomerato (6) Sforzi verticali www.francobontempi.org
  285. 285. 285 Stato di sforzo nel conglomerato (7) Sforzi verticali www.francobontempi.org
  286. 286. 286 Stato di sforzo nel conglomerato (8) Sforzi verticali www.francobontempi.org
  287. 287. 287 Stato di sforzo nel conglomerato (9) www.francobontempi.org
  288. 288. 288 Stato di sforzo nel conglomerato (10) www.francobontempi.org
  289. 289. 289 Stato di sforzo nel conglomerato (11) www.francobontempi.org
  290. 290. 290 Stato di sforzo nel conglomerato (12) www.francobontempi.org
  291. 291. 291 Stato di sforzo nel conglomerato (13) www.francobontempi.org
  292. 292. 292 Stato di sforzo nel conglomerato (14) www.francobontempi.org
  293. 293. 293 Stato di sforzo nel conglomerato (15) www.francobontempi.org
  294. 294. 294 Stato di sforzo nel conglomerato (16) www.francobontempi.org
  295. 295. 295 Stato di sforzo nel conglomerato (17) www.francobontempi.org
  296. 296. 296 Stato di sforzo nel conglomerato (18!) Von Mises ! www.francobontempi.org
  297. 297. 297 Stato di sforzo nel conglomerato (19!) Von Mises ! www.francobontempi.org
  298. 298. 298 Stato di sforzo piatti verticali (1) www.francobontempi.org
  299. 299. 299 Stato di sforzo piatti verticali (2) www.francobontempi.org
  300. 300. 300 Stato di sforzo piatti verticali (3) www.francobontempi.org
  301. 301. 301 Stato di sforzo piatti verticali (4) www.francobontempi.org
  302. 302. 302 Stato di sforzo piatti verticali (5) www.francobontempi.org
  303. 303. 303 Stato di sforzo nei piatti di chiusura www.francobontempi.org
  304. 304. 304 Stato di sforzo attacchi a C www.francobontempi.org
  305. 305. Str o N GER www.stronger2012.com 305
  306. 306. CMENSOLA ESTERNA www.francobontempi.org
  307. 307. 307 ANALISI E VERIFICHE STRUTTURALI DELLA MENSOLA DI APPOGGIO per Vsd = 1050 kN Maggio 2008 www.francobontempi.org
  308. 308. 308 EXTERNAL PART www.francobontempi.org
  309. 309. 309 www.francobontempi.org
  310. 310. 310 www.francobontempi.org
  311. 311. 311 MODELS OF EXTERNAL PART www.francobontempi.org vertical longitudinal transversal
  312. 312. CONFIGURAZIONI Configurazione iniziale e rinforzata www.francobontempi.org
  313. 313. 313 Mensola senza rinforzo www.francobontempi.org
  314. 314. 314 Mensola con rinforzo www.francobontempi.org
  315. 315. 315 Rinforzo www.francobontempi.org
  316. 316. 316 Mensola senza rinforzo www.francobontempi.org
  317. 317. 317 Mensola con rinforzo www.francobontempi.org
  318. 318. 318 Rinforzo www.francobontempi.org
  319. 319. 319 Mensola senza rinforzo www.francobontempi.org
  320. 320. 320 Mensola con rinforzo www.francobontempi.org
  321. 321. 321 Rinforzo www.francobontempi.org
  322. 322. 322 Deformabilità senza rinforzo www.francobontempi.org
  323. 323. 323 Deformabilità con rinforzo www.francobontempi.org
  324. 324. 324 Mensola senza rinforzo www.francobontempi.org
  325. 325. 325 Mensola con rinforzo www.francobontempi.org
  326. 326. 326 Mensola senza rinforzo: vista superiore www.francobontempi.org
  327. 327. 327 Mensola con rinforzo: vista superiore www.francobontempi.org
  328. 328. 328 Mensola senza rinforzo: vista inferiore www.francobontempi.org
  329. 329. 329 Mensola con rinforzo: vista inferiore www.francobontempi.org
  330. 330. 330 Mensola senza rinforzo: vista di lato www.francobontempi.org
  331. 331. 331 Mensola con rinforzo: vista di lato www.francobontempi.org
  332. 332. 332 Mensola senza rinforzo: vista di fronte www.francobontempi.org
  333. 333. 333 Mensola con rinforzo: vista di fronte www.francobontempi.org
  334. 334. ANALISI NON LINEARE Analisi elasto-plastica con elementi di contatto della configurazione iniziale www.francobontempi.org
  335. 335. 335 Moltiplicatore = 0.60 www.francobontempi.org
  336. 336. 336 Moltiplicatore = 0.80 www.francobontempi.org
  337. 337. 337 Moltiplicatore = 0.94 www.francobontempi.org
  338. 338. 338 Moltiplicatore = 0.60 www.francobontempi.org
  339. 339. 339 Moltiplicatore = 0.80 www.francobontempi.org
  340. 340. 340 Moltiplicatore = 0.94 www.francobontempi.org
  341. 341. 341 Moltiplicatore = 0.60 www.francobontempi.org
  342. 342. 342 Moltiplicatore = 0.80 www.francobontempi.org
  343. 343. 343 Moltiplicatore = 0.94 www.francobontempi.org
  344. 344. CONFIGURAZIONE FINALE Verifiche in campo elasto plastico e vincoli monolateri sul profilato a C www.francobontempi.org
  345. 345. Caratteristiche complessive: • Azione verticale mensola: Vd=1050 kN; • Acciaio mensola: Fe510 – S355; • Tiranti: 2 Ø 42 classe 10.9 (M42); • Bulloni ritegno: 2 Ø 16 classe 10.9 (M16): resist. taglio Vrd,tot = 2x70 = 140 kN; resist. trazione Nrd,tot = 2x99 = 180 kN; • Peso mensola fusa: 15.7 kg. 345 www.francobontempi.org
  346. 346. MF01-1 AD 00 modb NOFLEX Carico: Verticale 1050 kN www.francobontempi.org
  347. 347. SLE (Fz,Fx,Fy)=(1050,0,0) [kN] 347 www.francobontempi.org
  348. 348. SLU (Fz,Fx,Fy)=(1050,0,0) [kN] 348 www.francobontempi.org
  349. 349. SLE (Fz,Fx,Fy)=(1050,0,0) [kN] 349 www.francobontempi.org
  350. 350. SLU (Fz,Fx,Fy)=(1050,0,0) [kN] 350 www.francobontempi.org
  351. 351. SLE (Fz,Fx,Fy)=(1050,0,0) [kN] 351 www.francobontempi.org
  352. 352. SLU (Fz,Fx,Fy)=(1050,0,0) [kN] 352 www.francobontempi.org
  353. 353. SLE (Fz,Fx,Fy)=(1050,0,0) [kN] 353 www.francobontempi.org
  354. 354. SLU (Fz,Fx,Fy)=(1050,0,0) [kN] 354 www.francobontempi.org
  355. 355. MF01-1 AD 00 modc NOFLEX Carico: Verticale 1050 kN Longitudinale 250 kN www.francobontempi.org
  356. 356. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 356 www.francobontempi.org
  357. 357. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 357 www.francobontempi.org
  358. 358. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 358 www.francobontempi.org
  359. 359. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 359 www.francobontempi.org
  360. 360. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 360 www.francobontempi.org
  361. 361. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 361 www.francobontempi.org
  362. 362. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 362 www.francobontempi.org
  363. 363. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 363 www.francobontempi.org
  364. 364. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 364 www.francobontempi.org
  365. 365. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 365 www.francobontempi.org
  366. 366. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 366 www.francobontempi.org
  367. 367. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 367 www.francobontempi.org
  368. 368. SLE (Fz,Fx,Fy)=(1050,250,0) [kN] 368 www.francobontempi.org
  369. 369. SLU (Fz,Fx,Fy)=(1050,250,0) [kN] 369 www.francobontempi.org
  370. 370. MF01-1 AD 00 modd NOFLEX Carico: Verticale 1050 kN Trasversale 250 kN www.francobontempi.org
  371. 371. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 371 www.francobontempi.org
  372. 372. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 372 www.francobontempi.org
  373. 373. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 373 www.francobontempi.org
  374. 374. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 374 www.francobontempi.org
  375. 375. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 375 www.francobontempi.org
  376. 376. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 376 www.francobontempi.org
  377. 377. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 377 www.francobontempi.org
  378. 378. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 378 www.francobontempi.org
  379. 379. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 379 www.francobontempi.org
  380. 380. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 380 www.francobontempi.org
  381. 381. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 381 www.francobontempi.org
  382. 382. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 382 www.francobontempi.org
  383. 383. SLE (Fz,Fx,Fy)=(1050,0,250) [kN] 383 www.francobontempi.org
  384. 384. SLU (Fz,Fx,Fy)=(1050,0,250) [kN] 384 www.francobontempi.org
  385. 385. MF01-1 AD 00 mode NOFLEX Carico: Verticale 1050 kN Trasversale 175 kN Longitudinale 175 kN www.francobontempi.org
  386. 386. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 386 www.francobontempi.org
  387. 387. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 387 www.francobontempi.org
  388. 388. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 388 www.francobontempi.org
  389. 389. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 389 www.francobontempi.org
  390. 390. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 390 www.francobontempi.org
  391. 391. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 391 www.francobontempi.org
  392. 392. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 392 www.francobontempi.org
  393. 393. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 393
  394. 394. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 394 www.francobontempi.org
  395. 395. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 395 www.francobontempi.org
  396. 396. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 396 www.francobontempi.org
  397. 397. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 397 www.francobontempi.org
  398. 398. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 398 www.francobontempi.org
  399. 399. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 399 www.francobontempi.org
  400. 400. SLE(Fz,Fx,Fy)=(1050,175,175) [kN] 400 www.francobontempi.org
  401. 401. SLU(Fz,Fx,Fy)=(1050,175,175) [kN] 401 www.francobontempi.org
  402. 402. MF01-1 AD 00 modf NOFLEX Carico: Verticale 1050 kN Longitudinale 500 kN www.francobontempi.org
  403. 403. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 403
  404. 404. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 404 www.francobontempi.org
  405. 405. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 405 www.francobontempi.org
  406. 406. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 406 www.francobontempi.org
  407. 407. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 407 www.francobontempi.org
  408. 408. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 408 www.francobontempi.org
  409. 409. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 409 www.francobontempi.org
  410. 410. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 410 www.francobontempi.org
  411. 411. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 411 www.francobontempi.org
  412. 412. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 412 www.francobontempi.org
  413. 413. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 413 www.francobontempi.org
  414. 414. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 414 www.francobontempi.org
  415. 415. SLE (Fz,Fx,Fy)=(1050,500,0) [kN] 415 www.francobontempi.org
  416. 416. SLU (Fz,Fx,Fy)=(1050,500,0) [kN] 416 www.francobontempi.org
  417. 417. 417 Pesi soluzioni fattore correttivo utilizzo SNODO TIRANTE ACCIAIO 39NiCrMo3 bonificato 668 PR/02 1.4 2 2.8 1.9 5.3 AGGANCIO MENSOLA - - PR/15 - 1 0.1 1.0 0.1 PIATTO 115x8 l40 S355JR - Fe510B 355 0.3 1 0.3 1.0 0.3 BARRA POSTERIORE MENSOLA S355JR - Fe510B 355 PR/14 5.5 1 5.5 1.0 5.5 NERVATURA MENSOLA S355JR - Fe510B 355 PR/13 1.2 4 4.8 1.0 4.8 PIATTO MENSOLA S355JR - Fe510B 355 PR/12 3.8 1 3.8 1.0 3.8 PESO COMPLESSIVO 17.3 1.1 19.8 SOLUZIONE FUSA INIZIALE PESO COMPLESSIVO S355JR - Fe510B 14.3 1.0 14.3 CON RINFORZO PESO COMPLESSIVO S355JR - Fe510B 16.0 1.0 16.0 SOLUZIONE COMPOSTA materiale tasso di lavoro (Mpa) codice peso (kg) # peso (kg) - peso (kg) www.francobontempi.org
  418. 418. 418
  419. 419. Str o N GER www.stronger2012.com 419

×