• Save
Machine Learning Project
Upcoming SlideShare
Loading in...5

Machine Learning Project






Total Views
Views on SlideShare
Embed Views



3 Embeds 56

http://www.linkedin.com 26
http://www.slideshare.net 22
https://www.linkedin.com 8



Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

Machine Learning Project Machine Learning Project Presentation Transcript

  • An introduction to Torch; A Machine Learning Library in C++. Analysis and Implementation of CLARANS K-medoid Clustering Algorithm in the Java programming Language. Application of K-medoid to image Processing. By Adeyemi Fowe CPSC 7375 (Machine Learning) Spring 2008 Instructor Dr Mariofanna (Fani) Milanova Computer Science Department University of Arkansas at Little rock. Final Project Presentation
  • Torch : www.torch.ch Usage: Powerful & Fast High Learning Curve Made for Linux env. C++ OOP structure but C codes. Open Source plain txt .cc codes Features: Gradient Machines Support vector machines Ensemble models K-nearest-neighbors Distributions and Classifiers Speech recognition tools
  • Torch Structure; Multiple Inheritance
  • Torch3Vision Built on Torch Solid Image Processing More user friendly More sample codes examples Supports: pgm, ppm, gif, tif, jpeg Camera control; e.g Sony pan/tilt/zoom
  • Application; Face Detection
  • Sample Use; A Demo on Linux Console?
  • Clustering (Unsupervised Learning)
  • Clustering (Unsupervised Learning) Different types of Clustering: Partitioning Algorithms: K-means, K-medoid. Hierarchical Clustering: Tree of clusters rather than disjoint. Density Based Clustering: Cluster based on region of concentration. Statistical Clustering: Statistical techniques like probability and test of hypothesis .
  • K-Means & K-medoid
  • K-Means & K-medoid K-means clustering use the exact center of a cluster (means or the center of gravity) while K-medoid uses the most centrally located object in a cluster (medoid). K-medoid is less sensitive to outliers Compared to K-means. K value (number of clusters) has to be determined a-priori.
  • K-medoid Algorithms PAM (Partitioning Around Medoids) was developed by Kaufman and Rousseeuw (1990) Designed by Kaufman and Rousseeuw to handle large data sets, CLARA (Clustering LARge Applications) CLARANS: Clustering Large Applications based on Randomized Search. Raymond T. Ng and Jiawei Han(2002)
  • CLARANS Minimum Cost Search The diagram illustrates CLARANS algorithm which performs random search for Minimum cost over the entire data set. By changing swapping a medoid one at a time.
  • Java Implementation of CLARANS K-medoid Algorithm
  • To form a cluster (image classification). A medoid has to navigate within this 3-D space to find the closest set of pixels. This would make K-medoid take the pixel gray values into consideration wile clustering.
  • Sample Image
  • Extracted Gray-Values using TorchVision
  • 3D Plot of Pixel Gray-Values
  • Gray Image Pixel Map
  • Spectra and Spatial Pattern Recognition Spectral pattern recognition refers to the set of spectral radiances measurements obtained in the various wavelength bands for each pixel. Spatial pattern recognition involves the categorization of image pixels on the basis of their spatial relationship with pixels surrounding them. The aim of this experiment is to delineate the behavior of the K-medoid clustering algorithm while varying this two criteria. We want to show that changing the weight w is a compromise of spectra spatial pattern of an image.
  • Spatial and Spectral Differences Cost of assigning node i to representative pixel j is given by: The weight w, serves has a measure of our preference for spatial or spectra pattern recognition. It’s a weight metric for the preference structure in MCDA. When w=0: Spatial pattern only. When w=1: Spectral pattern only. When 0<w<1: Both Spatial and Spectra pattern is considered; A typical MADA .
  • CLARANS Clusters; K=3
  • Results for Spatial& Spectra
  • Pixel Distance Functions Reference: Wikipedia.com
  • Chebyshev Distance; Chess Board Distance http://en.wikipedia.org/wiki/Chebyshev_distance
  • The Lp Space
  • Lp Space and Decision Making
  • This clearly displays a Manhattan cluster for w=0; only spatial properties. This decision maker needs to consider the how the edges of the clusters Should be formed. This decision would Most likely be informed by the type of Information to be extracted.
  • Conclusion We implemented the more efficient CLARANS Algorithm for K-medoid using the Java programming language. We take advantage of our code and explore the differences in distance functions which could be part of the choice of a user. We showed that the choice of functions should depend on the expected edge-orientation of the clusters.
  • Thank You. Questions?
  • References [1] Chan, Y. (2001). Location Theory and Decision Analysis, ITP/South-Western [2] Chan, Y. Location, transport and land-use: Modeling spatial-temporal information. Heidelberg, Germany: Springer-Verlag. [3] Craig M. Wittenbrink, Glen Langdon, Jr. Gabriel Fernandez (1999), Feature Extraction of Clouds from GOES Satellite Data for Integrated Model Measurement Visualization, work paper [4] Raymond T. Ng, Jiawei Han, Efficient and Effective Clustering Methods for Spatial Data Mining, Proceedings of the 20th VLDB Conference Santiago, Chile, 1994 [5] Osmar R. Zaiane, Andrew Foss, Chi-Hoon Lee, and Weinan Wang, On Data Clustering Analysis: Scalability, Constraints and Validation, work paper [6] Gerald J. Dittberner (2001), NOAA’s GOES Satellite System – Status and Plans [7] Weather satellites teacher’s guide, Published by Environment Canada, ISBN Cat. No. En56-172/2001E-IN 0-662-31474-3 [8] ArcView user’s manual [9] Websites: http://goes2.gsfc.nasa.gov http://www.osd.noaa.gov/sats/goes.htm http://rsd.gsfc.nasa.gov/goes/ http://gtielectronics.com [10]Images: h ttp://images.ibsys.com/sh/images/weather/auto/2xat_ir_anim.gif http://ali.apple.com/space/space_images/9908212300Bret.jpg http://www.esri-ireland.ie/graphics/products/Image/ArcGIS_diag.jpg http://www.noaanews.noaa.gov/stories2006/images/goes-over-earth2.jpg http://www.slipperybrick.com/wp-content/uploads/2007/08/escape-key.jpg [11] Torch3vision Sebastien Marcel and Yann Rodriguez | http://torch3vision.idiap.ch/ [12] R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning software library . Technical Report IDIAP-RR 02-46, IDIAP, 2002 [13] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.