FEX | Industrie & Energie | 131112 | Conferentie Schaliegas & Olie | Presentatie | Auke Barnhoorn

534 views
302 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
534
On SlideShare
0
From Embeds
0
Number of Embeds
33
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

FEX | Industrie & Energie | 131112 | Conferentie Schaliegas & Olie | Presentatie | Auke Barnhoorn

  1. 1. Shale gas research in the Netherlands: Role of Fracture Network Complexity Auke Barnhoorn Department of Geoscience and Engineering Faculty of Civil Engineering and Geosciences Delft University of Technology Challenge the future 1
  2. 2. Shalegas: a ‘hot topic’ Challenge the future 2
  3. 3. Posidonia shale in the Netherlands Posidonia shale Toarcian age ~ 180 Ma Challenge the future Wong, 2007 3
  4. 4. Shalegas in the Netherlands: how much & where: very little known Challenge the future 4
  5. 5. Shaliegas in the Netherlands: how much & where: very little known • Rough estimates: 200 – 500 bcm gas. • Uncertain how much we can produce out of the shales • Very little Posidonia core materiaal available: 2-3 old wells • More research in shale gas potential vital • Exploration wells will give some necessary info on the potential Challenge the future 5
  6. 6. My main research question What is the effect of the rock fabric on fracture initiation and propagation? Challenge the future 6
  7. 7. Lithology determines fracture pattern Example from Kings Canyon, Australia Challenge the future 7
  8. 8. Lithology determines fracture pattern finely layered silt-sandstone massive sandstone Challenge the future 8
  9. 9. Lithology determines fracture pattern finely layered massive sandstone silt-sandstone Challenge the future 9
  10. 10. Lithology determines fracture pattern finely layered massive sandstone spacing ~ 150 m silt-sandstone Challenge the future 10
  11. 11. Lithology determines fracture pattern finely layered massive sandstone spacing ~ 150 m silt-sandstone Challenge the spacing ~ 10 future m 11
  12. 12. also on a small scale: variations in fracture patterns present 12 Challenge the future
  13. 13. Colin Sayers, Geophysical Prospecting , 2013 Shales • Highly anisotropic • Often strong compositional layering Geomechanical parameters from acoustic measurement of shales x3 0 O x2 Challenge the future 13 x1
  14. 14. Main research question Can we quantify the fracture pattern in shales? - including the role of fabric anisotropy - predict fracturing behaviour for Dutch shale plays Later: Can we also optimize the fracture pattern? Challenge the future Jurassic limestone and shales (UK) 14 Fracture network map
  15. 15. Whitby, UK Challenge the future 15
  16. 16. Cleveland Basin Stratigraphy Predom. mudstone Predom. Mudst., Limest. Predom. Ironst., Limest. Cox et al., 1999 Predom. Sandst., siltstone Challenge the future Hobbs et al., 2012 16
  17. 17. Posidonia shale Whitby (UK) May 2013 Fieldtrip: UU, TNO & TUD Auke Barnhoorn, 2013 Challenge the future 17
  18. 18. Posidonia shale Whitby (UK) Challenge the future 18 Auke Barnhoorn,
  19. 19. Posidonia shale Whitby (UK) Auke Barnhoorn, 2013 Auke Barnhoorn, 2013 Challenge the future 19
  20. 20. Posidonia shale Whitby (UK) Image of Dr. M. Houben (UU) Challenge the future 20
  21. 21. Main research question Can we quantify the fracture pattern in shales? including the role of fabric anisotropy My research: Experimental Fracturing and 3D rock characterization Challenge the future 21
  22. 22. Experimental Fracturing @ TU Delft microstructure s history k history statistics • Conventional deformation device • Controlled deformation conditions (stress, strain rate, elevated temperatures, confining pressure and fluid pressures) • Measurement of volume changes of sample and fluid (permeability, porosity) e history De Paola et al., 2009 22 Challenge the future
  23. 23. Fracture network growth - stress driven fracturing 1. 2. 3. 1. random fracture generation throughout sample 2. continuing fracture generation, fracture growth & linkup of individual fractures 3. complete linkup of fractures & formation of shear fracture Challenge the future 23 Barnhoorn et al., 2010 Geology 38, 779-782
  24. 24. Difference in fracture network growth dry random fracture generation high Pf high fluid pressure gradient fracture growth at high Pf side Challenge the future 24 Barnhoorn et al., 2010 Geology 38, 779-782
  25. 25. Difference in fracture network growth statistics Challenge the future 25 Barnhoorn et al., 2010 Geology 38, 779-782
  26. 26. Difference in fracture network growth statistics 30º conjugate fracture sets prominent in stress-driven fracturing Challenge the future 26
  27. 27. Universities NL Shale Gas research Giovanni Bertotti (TUD) David Smeulders (TUE) Martyn Drury (UU) Jan-Diederik van Wees (UU) Auke Barnhoorn (TUD) Collaboration From basin scale to pore scale Stress Modelling Experiments Rock Characterization Fracture modelling Fractures in unconventional rock types Prediction of fracture patterns in shales at a multitude of scales Topsector Energie Challenge the future 27
  28. 28. From basin scale to pore scale Shale characterization (UU) Tectonic modelling (UU) N Fractured reservoir modelling (TUD) Rock Physics & Frac. Experiments (TUD) photo: N. Hardebol, study: L. Laerhoven (MSc) (TNO) Challenge the future 28 Fracture propagation modelling (TUE)
  29. 29. Other research at TU Delft • Faculty of Civil Engineering and Geosciences Dr. Rick Donselaar en Dr. Gert-Jan Weltje (Dept. G&E) Sweet-spot determination for unconventional gas opportunities in NL Which sedimentological characteristics point to best places for shale gas production? Topsector Energie Challenge the future 29
  30. 30. Thank you! Johannes Vermeer Gezicht op Delft (1660-1661) Contact: Email: auke.barnhoorn@tudelft.nl Challenge the future 30 Internet: www.citg.tudelft.nl/abarnhoorn

×