Trabalho e energia site
Upcoming SlideShare
Loading in...5
×
 

Trabalho e energia site

on

  • 6,506 views

 

Statistics

Views

Total Views
6,506
Views on SlideShare
4,583
Embed Views
1,923

Actions

Likes
1
Downloads
263
Comments
0

2 Embeds 1,923

http://www.fisicaatual.com.br 1919
http://ldantasvieira.webnode.com 4

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Trabalho e energia site Trabalho e energia site Presentation Transcript

  • www.fisicaatual.com.br
    TRABALHO E ENERGIA
    Energia mecânica
    Energia elétrica
    Energia mecânica
  • www.fisicaatual.com.br
    Energia é um conceito abstrato e abrangente. Na nossa experiência cotidiana poderíamos entender a energia como sendo algo capaz de produzir transformações A energia pode ser vista como uma propriedade que expressa as alterações ocorridas nos sistemas devido aos processos de transferência e transformação realizados através de interações. As mudanças pelas quais passa um determinado sistema estão diretamente relacionadas com as interações que envolvem o mesmo, nestas mudanças manifesta-se uma propriedade comum a qualquer tipo de sistema denominada energia. As interações se referem às forças fundamentais da natureza (gravitacional, eletromagnética, forte e fraca). A energia de modo geral se refere à configuração (parte potencial) e à movimentação (parte cinética) de qualquer sistema, tanto do ponto de vista macroscópico, quanto microscópico. Esta configuração e movimentação serão alteradas durante as mudanças. Assim, as transferências ou transformações promovidas pelas interações (forças) podem ser analisadas observando-se as modificações ocorridas na energia (configuração e/ou movimentação) dos sistemas.
    Sabemos que para a transferência de energia será necessária “alguma coisa”, seja esta coisa uma onda, uma partícula ou um sistema de partículas, e que esta transferência será denominada de trabalho - se envolver interações macroscópicas - ou de calor - se envolver interações microscópicas (incluindo aqui a radiação eletromagnética como uma forma de calor).
  • Na figura abaixo, a bola antes de ser lançada não tem capacidade de produzir transformações em outro corpo (por exemplo, quebrar uma vidraça). Ela não possui energia. Após ser lançada, ela poderá quebrar uma vidraça, ou seja, pode alterar um outro corpo. Logo, irá possuir energia
    v1 = 0
    v2 = 44 m/s
    Foi aplicando força na bola, durante um certo deslocamento, que o jogador transferiu energia do seu corpo para a bola. Chamamos de trabalho a grandeza que ao relacionar a força aplicada com o deslocamento durante o qual a força atua, mede a energia transferida para um corpo.
    F
    F
    d
    www.fisicaatual.com.br
  • TRABALHO
    www.fisicaatual.com.br
    MEDIDA DA TRANSFORMAÇÃO/ VARIAÇÃO/TRANSFERÊNCIA DE ENERGIA
    Quem ganhou energia: recebeu trabalho
    Quem perdeu energia: realizou trabalho
    TRABALHO foi realizado pela pessoa sobre a caixa: pessoa perde energia química (processos biológicos internos) e caixa ganha energia cinética e energia térmica por causa do atrito.
    F
    d
  • Dx
    www.fisicaatual.com.br
    • Para utilizar essa expressão, a força deve ser constante.
    • A força que se deve utilizar no cálculo do trabalho é a componente de F na direção do movimento.
    • O trabalho é uma grandeza escalar.
    Trabalho = W = F . cos θ . d
    Unidade: newton.metro = N.m = joule (J)
    d
    Quando o halterofilista eleva o haltere, ele aplica força no mesmo sentido do deslocamento. O haltere recebeenergia e o trabalho é positivo. Quando o halterofilista abaixa o haltere, ele aplica força em sentido contrário ao deslocamento. O haltere diminuiu de energia e o trabalho é negativo.
    d
    d
    F
    F
    Quando a força e o deslocamento apresentarem o mesmo sentido, o trabalho é positivo. Quando apresentarem sentidos contrários, o trabalho é negativo.
  • A energia que está sendo gasta pelo halterofilista para sustentar o haltere é usada para aquecer seus músculos. Ela não está sendo transferida para o haltere. Se trabalho mede transferência de energia, não há trabalho sendo realizado sobre o haltere.
    Mesmo com a aplicação de força, se não houver deslocamento não há trabalho.
    W = F . cos θ . d = F. cosθ . 0 = 0
    Quando um satélite está em órbita circular em torno da Terra, a força gravitacional forma um ângulo reto com sua trajetória circular, em cada ponto dela. A órbita não sofrerá nenhuma alteração. Não há trabalho sendo realizado sobre o satélite.
    W = F.cosθ.d = F.cos 900.d = 0
    Quando a força for perpendicular ao deslocamento, não há realização de trabalho.
    www.fisicaatual.com.br
  • TRABALHO REALIZADO POR UMA FORÇA VARIÁVEL
    Força
    deslocamento
    d‘’
    d'
    Quando a força for variável, o trabalho é a área sob o gráfico força x deslocamento.
    www.fisicaatual.com.br
  • POTÊNCIA
    www.fisicaatual.com.br
    Definimos a potência mecânica de uma força como a medida da rapidez com que o trabalho é realizado , ou seja, mede a rapidez com que a força transforma ou transfere energia.
    Onde: W = trabalho realizado
    Δ t = tempo gasto para realizar o trabalho
    Unidade: joule/segundo = watt (W)
    1 cavalo vapor (C.V) = 735 W
    1 Horse Power (HP = 746 W
    Onde: F = força
    V = velocidade
  • www.fisicaatual.com.br
  • ENERGIA CINÉTICA
    www.fisicaatual.com.br
    Na figura abaixo, um objeto de massa “m” movimenta-se horizontalmente para a direita. A partir de um certo instante, uma força é aplicada no mesmo sentido do movimento. Um trabalho positivo é realizado aumentando a velocidade do objeto que passa de V0 para V durante um deslocamento “d”. Com o aumento de velocidade, o corpo terá maior capacidade de modificar (por exemplo, amassar) outros corpos. Terá maior energia.
    V0
    V
    Teremos:
    V2 = Vo2 + 2.a.d
    Pela segunda lei de Newton: F = m . a
    F
    F
    Logo:
  • www.fisicaatual.com.br
    O produto f.d é o trabalho realizado pela resultante de forças F e, portanto é o trabalho total realizado por todas as forças que atuam sobre o corpo.
    A grandeza é chamada de energia cinética (EC ) do corpo:
    A energia cinética é uma grandeza escalar e só depende da massa e da velocidade do corpo, sendo indiferente a direção e o sentido do movimento.
    Energia
    cinética inicial
    Trabalho
    Energia
    cinética final
    TEOREMA DO TRABALHO - ENERGIA
    O trabalho realizado pela resultante de forças é igual à variação da energia cinética do corpo.
  • www.fisicaatual.com.br
    • O trabalho realizado sobre um corpo mede a quantidade de energia transferida para o corpo.
    • Ter energia cinética é ter capacidade de realizar trabalho devido a uma certa velocidade.
    • O trabalho e a energia têm a mesma unidade, ou seja, o joule (J).
    • Quando o trabalho é positivo a energia cinética aumenta e a velocidade final do corpo é maior que a velocidade inicial.
    • Quando o trabalho é negativo a energia cinética diminui e a velocidade final do corpo é menor que a velocidade inicial.
    • Quando o trabalho é nulo, não há variação de energia cinética e a velocidade é constante.
  • ENERGIA POTENCIAL
    www.fisicaatual.com.br
    Um objeto pode armazenar energia por causa de sua posição com respeito a outro objeto. Essa energia é chamada de energia potencial (EP), porque neste estado de armazenamento ela tem o potencial de realizar trabalho.
    • Energia = Propriedade de um sistema que lhe permite realizar trabalho ...
    • Potencial = Virtual, possível.
    Quando um martelo é elevado no ar, existe um potencial para um trabalho sobre ele ser realizado pela força da gravidade, porém isso só ocorre quando o martelo é liberado. Por esse motivo, a energia associada com a posição denomina-se ENERGIA POTENCIAL GRAVITACIONAL.
  • www.fisicaatual.com.br
    Uma mola esticada ou comprimida, tem potencial de realizar trabalho. Quando um arco é vergado, energia é nele armazenada. Essa energia é chamada de ENERGIA POTENCIAL ELÁSTICA.
    Uma mola ao ser comprimida, sofre a ação de uma força que causa nela uma deformação (deslocamento). Trabalho é realizado na mola (energia é transferida para mola). Essa energia é armazenada como energia potencial.
    A energia potencial é uma forma de energia que pode ser associada com a configuração (ou arranjo) de um sistema de objetos, que exercem forças uns sobre os outros. Se a configuração muda, a energia potencial também pode mudar. Ao elevarmos um corpo ou deformarmos uma mola, há uma mudança de configuração em um sistema. Logo, haverá uma mudança de energia potencial.
  • www.fisicaatual.com.br
    ENERGIA POTENCIAL GRAVITACIONAL
    É necessário realizar trabalho para erguer objetos contra a gravidade terrestre. A energia de um corpo devido a sua posição elevada é chamada de energia potencial gravitacional. A quantidade dessa energia que um objeto elevado possui é igual ao trabalho que foi realizado contra a gravidade para erguê-lo.
    O trabalho realizado é igual à força necessária para movê-lo para cima, vezes a distância vertical na qual ele foi deslocado: W = F . d
    Uma vez que se inicie o movimento ascendente, a força para cima necessária para mantê-lo subindo com velocidade constante é igual ao peso (m.g) do objeto. (Existe uma pequena quantidade de trabalho extra necessária para fazer o objeto entrar em movimento, mas ela é compensada pelo trabalho negativo realizado para detê-lo no topo).
    W = F. d = m.g.h
    EP = m.g.h
  • www.fisicaatual.com.br
    A altura h é a distância acima de algum nível de referência, tal como o chão ou um piso de algum andar de um edifício. A energia potencial é relativa àquele nível e depende apenas de m.g e da altura h.
    3 m
    A energia potencial da bola é a mesma nos três casos, porque o trabalho realizado para elevá-la em 3 m é o mesmo .
  • www.fisicaatual.com.br
    ENERGIA POTENCIAL ELÁSTICA
    Ao esticarmos ou comprimirmos uma mola ou um elástico, sabemos que quando soltarmos esta mola ela tenderá a retornar a sua posição natural (original). Essa tendência de retornar a posição natural é devido a algo que fica armazenado na mola a medida que ela é esticada ou comprimida. Este algo é a energia potencial elástica.
    A força exercida por uma mola deformada é diretamente proporcional e tem sentido contrário à deformação :
    F = - K.x , onde:
    F = força elástica (N)
    x = deformação (m)
    K = constante elástica (N/m)
    Lei de Hooke
    A constante elástica da mola traduz a dureza da mola Quanto maior for a constante elástica da mola, mais difícil será deformá-la.
    Fp = força exercida pela pessoa
    F = força exercida pela mola
  • www.fisicaatual.com.br
    Toda mola deformada tem capacidade de realizar trabalho. Possui energia potencial elástica:
    Quando uma mola deformada exerce força num corpo, a deformação diminui e a força elástica diminui.
    d
    Felástica
    Felástica= 0
    x =0
  • www.fisicaatual.com.br
    Como a força elástica não é constante, o trabalho realizado pela força elástica é dado pela área sob o gráfico força elástica em função do deslocamento, sendo o deslocamento igual à deformação na mola (d = x);
    Fe
    K.x
  • ENERGIA MECÂNICA
    www.fisicaatual.com.br
    Para erguer o martelo de um bate-estacas é necessário realizar trabalho,e, em consequência, o martelo adquire a propriedade de realizar trabalho sobre uma estaca. Quando um arqueiro realiza trabalho para esticar um arco, este adquire a capacidade de realizar trabalho sobre a flecha. Em cada caso, “algo” foi ganho. Esse “algo” dado ao objeto capacitou-o a realizar trabalho. Esse “algo” pode ser uma compressão nos átomos do material de um objeto; pode ser uma separação física entre dois corpos que se atraem; pode ser uma redistribuição de cargas dentro das moléculas de uma substância. Esse “algo” que torna um objeto capaz de realizar trabalho é a energia. Como o trabalho, a energia é medida em joules.
    A energia aparece de várias formas. A energia mecânica é a forma de energia devida à posição relativa dos corpos que interagem (energia potencial) ou devida aos seus movimentos (energia cinética). A energia mecânica pode estar na forma de energia potencial, energia cinética ou ambas:
    E Mecânica = E Cinética + E Potencial
  • FORÇAS CONSERVATIVAS E DISSIPATIVAS
    As forças que atuam num sistema, modificando-lhe a configuração, dizem-se conservativas quando, regressando o sistema à configuração inicial, readquire também a energia cinética inicial. Isto significa que as forças conservativas conservaram a capacidade que o sistema tinha de realizar trabalho, e daí o seu nome.
    VB = 0
    VB = 0
    www.fisicaatual.com.br
    P
    P
    P
    P
    A
    B
    A
    B
    De A para B, a força peso faz com que a energia cinética se transforme em potencial.
    De B para A, a força peso faz com que a energia potencial se transforme em cinética.
    d
    d
    VA
    VA
    Se na subida e na descida apenas a força peso atuar, o sistema regressa à sua configuração inicial readquirindo a mesma energia cinética inicial. A capacidade de realizar trabalho foi conservada. A força peso é conservativa.
  • As forças que atuam num sistema dizem-se não conservativas ou dissipativas quando, ao deixarem de realizar trabalho, o sistema ou não regressa à configuração inicial ou regressa a ela com energia cinética diferente da que tinha no princípio. Isto quer dizer que as forças não conservativas não conservaram a capacidade que o sistema tinha de realizar trabalho.
    VA < VB
    A
    B
    F
    F
    VA’ < VB
    FATRITO
    FATRITO
    FATRITO
    FATRITO
    A’
    B
    Devido ao atrito, o corpo volta ao ponto A com uma velocidade e energia cinética menor do que quando saiu. A força de atrito é dissipativa.
    www.fisicaatual.com.br
  • (1)
    A
    (2)
    (3)
    B
    www.fisicaatual.com.br
    Uma força é conservativa se o trabalho realizado por ela para levar um corpo do ponto A para o ponto B não depender da trajetória, mas somente do ponto de partida e do ponto de chegada:
    Força conservativa
    W1 = W2 = W3
    O trabalho realizado pela força conservativa é armazenado pelo corpo na forma de energia potencial , podendo ser reutilizada na realização de outro trabalho.
    O trabalho realizado pela força peso não depende da trajetória ( W = - m.g.h) e fica armazenado na forma de energia potencial. A força peso é conservativa.
  • www.fisicaatual.com.br
    Trajetória 2
    Fatrito
    Fatrito
    Fatrito
    Trajetória 1
    Quanto mais longa for a trajetória descrita pela corpo, maior o trabalho realizado pela força de atrito. O trabalho realizado pela força de atrito segundo a trajetória 2 é maior que segundo a trajetória 1. A força de atrito é dissipativa, pois o trabalho realizado por ela depende da trajetória. O trabalho realizado pela força de atrito não é armazenado como energia potencial. É dissipado na forma de calor.
  • X = 0
    Em (1): sistema apresenta só energia cinética:
    Em (2): sistema apresenta energia cinética e energia potencial elástica. A energia cinética diminuiu:
    Em (3): sistema só apresenta energia potencial elástica:
    Em (4): sistema apresenta só energia cinética:
    Emecânica 4= Ecinética 4
    V1
    (1)
    Emecânica 1= Ecinética 1
    X
    V2 < V1
    (2)
    Emecânica 3=Epotencial 3
    XMáximo
    (3)
    V = 0
    Se o atrito for desprezível
    Emecânica2 = Ecinética 2 Epotencial 2
    +
    V3
    (4)
    =
    X = 0
    Ecinética 1
    Ecinética 4
    Força elástica é uma força conservativa.
    www.fisicaatual.com.br
  • CONSERVAÇÃO DA ENERGIA MECÂNICA
    Na figura 01- A, a bolinha possuía no instante inicial t 0 apenas energia potencial gravitacional. Ao chega no solo, ela apresentará uma velocidade V e toda sua energia estará na forma de energia cinética.
    Na figura 01- B, a bolinha foi lançada para cima com uma velocidade inicial igual à velocidade com que tocou o solo. Assim, ela é lançada com a mesma energia cinética com que tocou o solo. Se o atrito foi desprezível, ela atingirá a mesma altura “h” com que foi abandonada na figura 01- A. Sob ação apenas da força peso, o que a bolinha perde de energia cinética ela adquire de energia potencial e vice-versa. A energia mecânica permanece constante. Se existisse atrito, a bolinha na figura 01- B atingiria uma altura menor que “h”. Nem toda energia cinética seria transformada em potencial. A energia mecânica não permaneceria constante.
    www.fisicaatual.com.br
  • Se apenas forças conservativas atuarem num sistema, a soma da energia cinética com a potencial do sistema permanecerá constante.
    Tanto a energia cinética quanto a energia potencial podem mudar, mas sua soma permanecerá constante. Assim, se apenas forças conservativas atuarem, o que um corpo perder de energia cinética será ganho em energia potencial.
    Emecânica= Ecinética Epotencial
    +
    Se houver a ação de forças dissipativas (atrito) a energia cinética e potencial serão convertidas em outras formas de energia como calor, som, etc. Não haverá, então, conservação de energia mecânica.
    www.fisicaatual.com.br