Accessing to Two-Dimensional Matrix of Turbine ElmDsl

1,446 views

Published on

Guide 1: Accessing to Two-Dimensional Matrix of Turbine.ElmDsl

Published in: Engineering
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,446
On SlideShare
0
From Embeds
0
Number of Embeds
60
Actions
Shares
0
Downloads
84
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Accessing to Two-Dimensional Matrix of Turbine ElmDsl

  1. 1. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 1/72 Guide 1: Accessing to Two- Dimensional Matrix of Turbine.ElmDsl Francisco M. Gonzalez-Longatt, PhD Manchester, UK, November 2010
  2. 2. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 2/72 This small guide describe how access the two dimensional matrix of the Turbine.ElmDsl Guide 1: Accessing to Two- Dimensional Matrix of Turbine.ElmDsl Francisco M. Gonzalez-Longatt fglogatt@fglongatt.org.ve Manchester, November 2010
  3. 3. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 3/72 Find the DSL Model • Open the common models (*.ElmDsl) on the Data Manager DSL Elements Edit relevant object for calculation
  4. 4. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 4/72 Select the DSL Model Aerodynamic
  5. 5. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 5/72 ElmDSL: Aerodynamic • Two dimensional Array: Aerodynamic Aerodynamic
  6. 6. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 6/72 ElmDSL: Aerodynamic • Find the 2 dimensional matrix Press the button ‘NEXT’
  7. 7. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 7/72 Characteristics • Characteristics: Press the button ‘NEXT’
  8. 8. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 8/72 Two Dimensional Characteristic • Two-Dimensional Characteristic Here the 2-dimensional data is stored 6 8 0 0 0 0 0 0 0 0 2 4 6 8 10 12 0 0 0.05 0.3 0.45 0.35 0.3 0.25 5 0 0.06 0.25 0.33 0.32 0.28 0.2 10 0 0.08 0.25 0.28 0.22 0.12 0 15 0 0.1 0.22 0.3 0.11 -0.05 -0.2 25 0.01 0.12 0.12 -0.05 -0.2 -0.5 -0.7
  9. 9. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 9/72 Representation of Cp • Power coefficient (Cp) versus Tip Speed ratio 0 2 4 6 8 10 12 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Tip Speed Ratio - Lambda PowerCoefficient-Cp Beta = 0 Beta = 5 Beta = 10 Beta = 15 Beta = 20 Beta = 25
  10. 10. Dr. Francisco M. Gonzalez-Longatt, fglongatt.Copyright © 2010 10/72 Any question? Visit: www.fglongatt.org.ve

×