0
Focus during the entire Power Point activity.
Solidify your studying skills during this
class period.
Perform your work in...
Know Definitions of Key
Terms & Symbols
The Batallac, the 1500 kg car used by
Batfink and Karate to fight crime, is
stopped at a height of 35 meters at the top
of...
SOLUTION:
How much energy has been transferred into
which container?

K

U

m = 1700 kg
g = 9.8 m/s2
Δy = 35 m

Ug

Ug = 5...
What is the velocity of
the Batallac just before
it hits the water?
SOLUTION:
Final velocity.

K

U

m = 1700 kg
mb = 25 kg
Δy = 35 m
Ug = 583,100 J

Vf

Vf= 26.19 m/s
F = -kΔl
P = W/t
Our heroes, Batfink and Karate, are
stuck in quick drying cement. Big
Ears Ernie has vertically displaced a
one metric ton...
SOLUTION:
Find energy.

K

U

m = 1000 kg
Δy = 4 m
g = 9.8 m/s2

Ug

Ug= 39,200 J
Draw an energy bar chart to
illustrate the distribution of
energy when the wrecking
ball is displaced 3 meters at
the oppo...
SOLUTION:
Distribution of energy containers.

K
ET = 39,299 J
m = 1000 kg
Δy = 3 m
g = 9.8 m/s2

U
KE

KE= 9,800 J
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000
0
Total Energy

Ug

KE
What was the force exerted
on the wrecking ball to
place it in its original
position?
SOLUTION:
Find force.

K

U

m = 1000 kg
Δy = 4 m
g = 9.8 m/s2

F

F= 9,800 N
The Batallac has come to a
stop between the two bridge
decks 81.87 meters above the
icy river. What is the total
energy in...
SOLUTION:
Find energy.

K

U

m = 1700 kg
Δy = 81.87 m
g = 9.8 m/s2

Ug

Ug= 1,363,954.2 J
What is the maximum
velocity the batallac will
attain before hitting the
water?
SOLUTION:
Find velocity.

K

U

m = 1700 kg
v
Δy = 81.87 m
g = 9.8 m/s2
Ug= 1,363,954.2 J
v = 40.06 m/s
How much time would it
take for the batallac to
reach the water below?
SOLUTION:
Find time.

K

U

vi = 0 m/s
vf = 40.06 m/s
Δy = 81.87 m
g = 9.8 m/s2

tf

tf= 4.09 s
Fortunately, Batfink is able to
free himself from the Batallac
and stop the car from falling
into the river. How much
forc...
SOLUTION:
Find force.

K

U

m = 1700 kg
F
Δy = -81.87 m
g = 9.8 m/s2
Ug= 1,363,954.2 J
F = -16,660 N
If this force was applied
during the entire fall of
the Batallac, how much
power did Batfink
exert?
SOLUTION:
Find power.

K

U

m = 1700 kg
P
Δy = 81.87 m
g = 9.8 m/s2
Ug= 1,363,954.2 J
Tf = 4.09 s
P = 333,485.13 W
Batfink is dropped
through a trap door
disguised as a welcome
mat. If he falls 20
meters, what is his KE
just before hitti...
SOLUTION:
Find energy.

K

U

m = 50 kg
Δy = -20 m
g = 9.8 m/s2

KE

KE = -9,800 J
Fortunately for Batfink, there
was a spring on the floor
under the trap door. If the
force needed to compress
this spring ...
SOLUTION:
Find spring constant.

K

U

F = 2100 N
Δl = 3 m

k

k = 700 N/m
How far did the spring
compress if all the
energy from Batfink was
transferred to the
spring?
SOLUTION:
Find change in length.

K

U

Us = 9,800 J
k = 700 N/m

Δl
Δl = 5.29 m
6 2012 ppt batfink energy review
6 2012 ppt batfink energy review
Upcoming SlideShare
Loading in...5
×

6 2012 ppt batfink energy review

769

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
769
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "6 2012 ppt batfink energy review"

  1. 1. Focus during the entire Power Point activity. Solidify your studying skills during this class period. Perform your work in your science journal so you have created a study guide for the test. Call me over if you are having difficulty getting started. If your answer is confirmed as correct, become a student/teacher and help someone in class who does not understand the method used to solve the problem.
  2. 2. Know Definitions of Key Terms & Symbols
  3. 3. The Batallac, the 1500 kg car used by Batfink and Karate to fight crime, is stopped at a height of 35 meters at the top of a damaged bridge. You may assume there is no friction. How much energy has been transferred? What container is this energy stored in? Remember that Batfink is 50 kg and Karate is 150 kg.
  4. 4. SOLUTION: How much energy has been transferred into which container? K U m = 1700 kg g = 9.8 m/s2 Δy = 35 m Ug Ug = 583,100 J F = -kΔl P = W/t
  5. 5. What is the velocity of the Batallac just before it hits the water?
  6. 6. SOLUTION: Final velocity. K U m = 1700 kg mb = 25 kg Δy = 35 m Ug = 583,100 J Vf Vf= 26.19 m/s F = -kΔl P = W/t
  7. 7. Our heroes, Batfink and Karate, are stuck in quick drying cement. Big Ears Ernie has vertically displaced a one metric ton (1,000 kg) wrecking ball 4 meters and is attempting to smash them. How much energy is being stored in the g-field?
  8. 8. SOLUTION: Find energy. K U m = 1000 kg Δy = 4 m g = 9.8 m/s2 Ug Ug= 39,200 J
  9. 9. Draw an energy bar chart to illustrate the distribution of energy when the wrecking ball is displaced 3 meters at the opposite end of it’s swing.
  10. 10. SOLUTION: Distribution of energy containers. K ET = 39,299 J m = 1000 kg Δy = 3 m g = 9.8 m/s2 U KE KE= 9,800 J
  11. 11. 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 Total Energy Ug KE
  12. 12. What was the force exerted on the wrecking ball to place it in its original position?
  13. 13. SOLUTION: Find force. K U m = 1000 kg Δy = 4 m g = 9.8 m/s2 F F= 9,800 N
  14. 14. The Batallac has come to a stop between the two bridge decks 81.87 meters above the icy river. What is the total energy in the gravitational field?
  15. 15. SOLUTION: Find energy. K U m = 1700 kg Δy = 81.87 m g = 9.8 m/s2 Ug Ug= 1,363,954.2 J
  16. 16. What is the maximum velocity the batallac will attain before hitting the water?
  17. 17. SOLUTION: Find velocity. K U m = 1700 kg v Δy = 81.87 m g = 9.8 m/s2 Ug= 1,363,954.2 J v = 40.06 m/s
  18. 18. How much time would it take for the batallac to reach the water below?
  19. 19. SOLUTION: Find time. K U vi = 0 m/s vf = 40.06 m/s Δy = 81.87 m g = 9.8 m/s2 tf tf= 4.09 s
  20. 20. Fortunately, Batfink is able to free himself from the Batallac and stop the car from falling into the river. How much force was needed to bring the car to a complete stop?
  21. 21. SOLUTION: Find force. K U m = 1700 kg F Δy = -81.87 m g = 9.8 m/s2 Ug= 1,363,954.2 J F = -16,660 N
  22. 22. If this force was applied during the entire fall of the Batallac, how much power did Batfink exert?
  23. 23. SOLUTION: Find power. K U m = 1700 kg P Δy = 81.87 m g = 9.8 m/s2 Ug= 1,363,954.2 J Tf = 4.09 s P = 333,485.13 W
  24. 24. Batfink is dropped through a trap door disguised as a welcome mat. If he falls 20 meters, what is his KE just before hitting the ground?
  25. 25. SOLUTION: Find energy. K U m = 50 kg Δy = -20 m g = 9.8 m/s2 KE KE = -9,800 J
  26. 26. Fortunately for Batfink, there was a spring on the floor under the trap door. If the force needed to compress this spring 3 meters is 2100 N, what is the spring constant?
  27. 27. SOLUTION: Find spring constant. K U F = 2100 N Δl = 3 m k k = 700 N/m
  28. 28. How far did the spring compress if all the energy from Batfink was transferred to the spring?
  29. 29. SOLUTION: Find change in length. K U Us = 9,800 J k = 700 N/m Δl Δl = 5.29 m
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×