Your SlideShare is downloading. ×
0
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
1114 ch 11 day 14
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

1114 ch 11 day 14

215

Published on

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
215
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Transcript

    • 1. 11.6 The Binomial TheoremMatthew 7:7 "Ask, and it shall be given you; seek, and yeshall find; knock, and it shall be opened unto you."
    • 2. How do we expand ( a + b ) ? n
    • 3. How do we expand ( a + b ) ? nWe will explore two methods:
    • 4. How do we expand ( a + b ) ? nWe will explore two methods:1) Using Pascal’s Triangle (a recursive method)
    • 5. How do we expand ( a + b ) ? nWe will explore two methods:1) Using Pascal’s Triangle (a recursive method)2) Using the Binomial Theorem (an explicit method that uses combinatorics)
    • 6. Pascal’s Triangle
    • 7. Pascal’s Triangle Recall from last year ...
    • 8. Pascal’s Triangle Provides coefficients for expansion of a binomial
    • 9. Pascal’s Triangle Provides coefficients for expansion of a binomial 0 (a + b) = 1 1 (a + b) = 1a + 1b 2 2 2 (a + b) = 1a + 2ab + 1b 3 3 2 2 3 (a + b) = 1a + 3a b + 3ab + 1b 4 4 3 2 2 3 4 (a + b) = 1a + 4a b + 6a b + 4ab + 1b 5 5 4 3 2 2 3 4 5 (a + b) = 1a + 5a b + 10a b + 10a b + 5ab + 1b
    • 10. Pascal’s Triangle Provides coefficients for expansion of a binomial 0 (a + b) = 1 1 (a + b) = 1a + 1b 2 2 2 (a + b) = 1a + 2ab + 1b 3 3 2 2 3 (a + b) = 1a + 3a b + 3ab + 1b 4 4 3 2 2 3 4 (a + b) = 1a + 4a b + 6a b + 4ab + 1b 5 5 4 3 2 2 3 4 5 (a + b) = 1a + 5a b + 10a b + 10a b + 5ab + 1b Also notice the pattern of the exponents!
    • 11. Pascal’s Triangle Provides coefficients for expansion of a binomial 0 (a + b) = 1 1 (a + b) = 1a + 1b 2 2 2 (a + b) = 1a + 2ab + 1b 3 3 2 2 3 (a + b) = 1a + 3a b + 3ab + 1b 4 4 3 2 2 3 4 (a + b) = 1a + 4a b + 6a b + 4ab + 1b 5 5 4 3 2 2 3 4 5 (a + b) = 1a + 5a b + 10a b + 10a b + 5ab + 1b Also notice the pattern of the exponents! Let’s expand ( a + b ) . 6 (do on the board)
    • 12. Let’s expand ( 3 − xy ) 4
    • 13. Let’s expand ( 3 − xy ) 4First, write out ( a + b ) in expanded form. 4
    • 14. Let’s expand ( 3 − xy ) 4First, write out ( a + b ) in expanded form. 4 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + b
    • 15. Let’s expand ( 3 − xy ) 4First, write out ( a + b ) in expanded form. 4 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + bThen substitute 3 for a and -xy for b
    • 16. Let’s expand ( 3 − xy ) 4First, write out ( a + b ) in expanded form. 4 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + bThen substitute 3 for a and -xy for b 4 3 2 2 3 4 ( 3) + 4 ( 3) ( −xy ) + 6 ( 3) ( −xy ) + 4 ( 3) ( −xy ) + ( −xy )
    • 17. Let’s expand ( 3 − xy ) 4First, write out ( a + b ) in expanded form. 4 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + bThen substitute 3 for a and -xy for b 4 3 2 2 3 4 ( 3) + 4 ( 3) ( −xy ) + 6 ( 3) ( −xy ) + 4 ( 3) ( −xy ) + ( −xy )and simplify
    • 18. Let’s expand ( 3 − xy ) 4First, write out ( a + b ) in expanded form. 4 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + bThen substitute 3 for a and -xy for b 4 3 2 2 3 4 ( 3) + 4 ( 3) ( −xy ) + 6 ( 3) ( −xy ) + 4 ( 3) ( −xy ) + ( −xy )and simplify 2 2 3 3 4 4 81− 108xy + 54x y − 12x y + x y
    • 19. Pascal’s Triangle works great when n issmall in ( a + b ) nThe Binomial Theorem is better when nis large. Let’s take a look at that now.
    • 20. The Binomial Theorem
    • 21. The Binomial Theorem a, b ∈ ° ; n ∈ positive integers n ⎛ n ⎞ n ⎛ n ⎞ n−1 ⎛ n ⎞ n−2 2 ⎛ n ⎞ n−1 ⎛ n ⎞ n(a + b) = ⎜ ⎟ a + ⎜ ⎟ a b + ⎜ ⎟ a b +K + ⎜ ⎟ ab + ⎜ n ⎟ b ⎝ 0 ⎠ ⎝ 1 ⎠ ⎝ 2 ⎠ ⎝ n − 1⎠ ⎝ ⎠
    • 22. The Binomial Theorem a, b ∈ ° ; n ∈ positive integers n ⎛ n ⎞ n ⎛ n ⎞ n−1 ⎛ n ⎞ n−2 2 ⎛ n ⎞ n−1 ⎛ n ⎞ n(a + b) = ⎜ ⎟ a + ⎜ ⎟ a b + ⎜ ⎟ a b +K + ⎜ ⎟ ab + ⎜ n ⎟ b ⎝ 0 ⎠ ⎝ 1 ⎠ ⎝ 2 ⎠ ⎝ n − 1⎠ ⎝ ⎠Let’s review combinations ... (next slide)
    • 23. Combinations ⎛ n ⎞ n! ⎜ r ⎟ = r!( n − r )! ⎝ ⎠
    • 24. Combinations ⎛ n ⎞ n! ⎜ r ⎟ = r!( n − r )! ⎝ ⎠Example: ⎛ 5 ⎞ 5! ⎜ 2 ⎟ = 2!( 5 − 2 )! ⎝ ⎠ 5 ⋅ 4 ⋅ 3⋅ 2 ⋅1 = ( 2 ⋅1)( 3⋅ 2 ⋅1) 5⋅4 = 2 = 10
    • 25. Combinations ⎛ n ⎞ n! ⎜ r ⎟ = r!( n − r )! ⎝ ⎠Example: ⎛ 5 ⎞ 5! ⎜ 2 ⎟ = 2!( 5 − 2 )! ⎝ ⎠ 5 ⋅ 4 ⋅ 3⋅ 2 ⋅1 = ( 2 ⋅1)( 3⋅ 2 ⋅1) 5⋅4 = 2 = 10Let’s review how your calculator can do this ...
    • 26. ⎛ 5 ⎞To do ⎜ ⎟ enter 5 nCr 2 ⎝ 2 ⎠
    • 27. ⎛ 5 ⎞To do ⎜ ⎟ enter 5 nCr 2 ⎝ 2 ⎠For all combinations, you can use your calculator.In your work, just show the combination notation,but not the nCr notation.
    • 28. 4Use the Binomial Theorem to expand ( a + b )
    • 29. 4Use the Binomial Theorem to expand ( a + b ) ⎛ 4 ⎞ 4 ⎛ 4 ⎞ 3 ⎛ 4 ⎞ 2 2 ⎛ 4 ⎞ 3 ⎛ 4 ⎞ 4 ⎜ 0 ⎟ a + ⎜ 1⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3 ⎟ ab + ⎜ 4 ⎟ b ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
    • 30. 4Use the Binomial Theorem to expand ( a + b ) ⎛ 4 ⎞ 4 ⎛ 4 ⎞ 3 ⎛ 4 ⎞ 2 2 ⎛ 4 ⎞ 3 ⎛ 4 ⎞ 4 ⎜ 0 ⎟ a + ⎜ 1⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3 ⎟ ab + ⎜ 4 ⎟ b ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + b
    • 31. 4Use the Binomial Theorem to expand ( a + b ) ⎛ 4 ⎞ 4 ⎛ 4 ⎞ 3 ⎛ 4 ⎞ 2 2 ⎛ 4 ⎞ 3 ⎛ 4 ⎞ 4 ⎜ 0 ⎟ a + ⎜ 1⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3 ⎟ ab + ⎜ 4 ⎟ b ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 4 3 2 2 3 4 a + 4a b + 6a b + 4ab + b nFor more complex binomials, first expand ( a + b )and then substitute in for a and b ... just like wedid with the Pascal’s Triangle method.
    • 32. 6Use the Binomial Theorem to expand ( x −2 )
    • 33. 6 Use the Binomial Theorem to expand ( x −2 )⎛ 6 ⎞ 6 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 4 2 ⎛ 6 ⎞ 3 3 ⎛ 6 ⎞ 2 4 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 6⎜ 0 ⎟ a + ⎜ 1 ⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3⎟ a b + ⎜ 4 ⎟ a b + ⎜ 5 ⎟ ab + ⎜ 6 ⎟ b⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
    • 34. 6 Use the Binomial Theorem to expand ( x −2 )⎛ 6 ⎞ 6 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 4 2 ⎛ 6 ⎞ 3 3 ⎛ 6 ⎞ 2 4 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 6⎜ 0 ⎟ a + ⎜ 1 ⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3⎟ a b + ⎜ 4 ⎟ a b + ⎜ 5 ⎟ ab + ⎜ 6 ⎟ b⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ a= x b = −2
    • 35. 6 Use the Binomial Theorem to expand ( x −2 )⎛ 6 ⎞ 6 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 4 2 ⎛ 6 ⎞ 3 3 ⎛ 6 ⎞ 2 4 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 6⎜ 0 ⎟ a + ⎜ 1 ⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3⎟ a b + ⎜ 4 ⎟ a b + ⎜ 5 ⎟ ab + ⎜ 6 ⎟ b⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ a= x b = −2 6 5 4 2 3 3 2 4 1 x + 6 x ( −2 ) + 15 x ( −2 ) + 20 x ( −2 ) + 15 x ( −2 ) 5 6 +6 x ( −2 ) + 1( −2 )
    • 36. 6 Use the Binomial Theorem to expand ( x −2 )⎛ 6 ⎞ 6 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 4 2 ⎛ 6 ⎞ 3 3 ⎛ 6 ⎞ 2 4 ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 6⎜ 0 ⎟ a + ⎜ 1 ⎟ a b + ⎜ 2 ⎟ a b + ⎜ 3⎟ a b + ⎜ 4 ⎟ a b + ⎜ 5 ⎟ ab + ⎜ 6 ⎟ b⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ a= x b = −2 6 5 4 2 3 3 2 4 1 x + 6 x ( −2 ) + 15 x ( −2 ) + 20 x ( −2 ) + 15 x ( −2 ) 5 6 +6 x ( −2 ) + 1( −2 ) 5 3 1 3 2 x − 12x + 60x − 160x + 240x − 192x + 64 2 2 2
    • 37. HW #11“I am a little pencil in the hand of a writing God who issending a love letter to the world.” Mother Teresa

    ×