Your SlideShare is downloading. ×
0
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
0804 ch 8 day 4
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

0804 ch 8 day 4

112

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
112
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Transcript

    • 1. 8.2 Graphs of Polar Equations2 Timothy 3:16 "All Scripture is breathed out by Godand profitable for teaching, for reproof, for correction,and for training in righteousness."
    • 2. We graph on the r-θ plane.(Review the design of the polar graph paper)
    • 3. We graph on the r-θ plane.(Review the design of the polar graph paper)Just as we did when learning how to graph usinga Cartesian Coordinate plane in Algebra, we willstart off by graphing a polar equation “by hand”.
    • 4. We graph on the r-θ plane.(Review the design of the polar graph paper)Just as we did when learning how to graph usinga Cartesian Coordinate plane in Algebra, we willstart off by graphing a polar equation “by hand”.We will set up a table of values for this equation: r = 3sin θ “pick a θ , find r “
    • 5. r = 3sin θθ r
    • 6. r = 3sin θθ r0°
    • 7. r = 3sin θθ r0° 0
    • 8. r = 3sin θ θ r0° 030°
    • 9. r = 3sin θθ r0° 030° 1.5
    • 10. r = 3sin θ θ r0° 030° 1.545°
    • 11. r = 3sin θ θ r0° 030° 1.545° 2.12
    • 12. r = 3sin θ θ r0° 030° 1.545° 2.1260°
    • 13. r = 3sin θ θ r0° 030° 1.545° 2.1260° 2.6
    • 14. r = 3sin θ θ r0° 030° 1.545° 2.1260° 2.690°
    • 15. r = 3sin θ θ r0° 030° 1.545° 2.1260° 2.690° 3
    • 16. r = 3sin θ θ r θ r0° 030° 1.545° 2.1260° 2.690° 3
    • 17. r = 3sin θ θ r θ r0° 0 120°30° 1.545° 2.1260° 2.690° 3
    • 18. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.545° 2.1260° 2.690° 3
    • 19. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135°45° 2.1260° 2.690° 3
    • 20. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.1260° 2.690° 3
    • 21. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150°60° 2.690° 3
    • 22. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.690° 3
    • 23. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180°90° 3
    • 24. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180° 090° 3
    • 25. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180° 090° 3 210°
    • 26. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180° 090° 3 210° −1.5
    • 27. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180° 090° 3 210° −1.5 225°
    • 28. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180° 090° 3 210° −1.5 225° −2.12
    • 29. Now, sketch these points on your graph paper.When done, compare your graph with the personnext to you.
    • 30. r = 3sin θ θ r θ r0° 0 120° 2.630° 1.5 135° 2.1245° 2.12 150° 1.560° 2.6 180° 090° 3 210° −1.5 225° −2.12
    • 31. Let’s graph it on your calculator ... mode: Polar format: Polar GCGraph in Radian mode ... and trace thenGraph in Degree mode ... and trace
    • 32. Let’s graph it on your calculator ... mode: Polar format: Polar GCGraph in Radian mode ... and trace thenGraph in Degree mode ... and traceYou need to be able to graph polar equations usingyour calculator and the trace feature.Let’s do some examples ...
    • 33. 1. r = 5 zoom standard zoom square
    • 34. 1. r = 5 zoom standard zoom square cos ( 3θ )2. r = [ −1, 1], [ −1, 1] graph 2
    • 35. 1. r = 5 zoom standard zoom square cos ( 3θ )2. r = [ −1, 1], [ −1, 1] graph 23. r = 8 cos ( 2θ ) [ −8, 8 ], [ −8, 8 ] so zoom standard zoom square works ...
    • 36. 4. pg. 592 figure 12 3 ⎛ 5θ ⎞ θ max : 720° r = sin θ + sin ⎜ ⎟ ⎝ 2 ⎠ [ −2, 2 ], [ −2, 2 ]
    • 37. 4. pg. 592 figure 12 3 ⎛ 5θ ⎞ θ max : 720° r = sin θ + sin ⎜ ⎟ ⎝ 2 ⎠ [ −2, 2 ], [ −2, 2 ]5. pg. 593 figure 13 ⎛ 2θ ⎞ θ max : 1080° r = cos ⎜ ⎟ ⎝ 3 ⎠ [ −1, 1], [ −1, 1] graph zoom square
    • 38. Tomorrow we will look at some specific “families”of polar equations.Do you know how to get your calculator back to“normal”? No HW!!!The price of greatness is responsibility. Winston Churchill

    ×