Upcoming SlideShare
×

# 0303 ch 3 day 3

120

Published on

Published in: Education, Technology, Business
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

Views
Total Views
120
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
0
0
Likes
0
Embeds 0
No embeds

No notes for slide
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• ### 0303 ch 3 day 3

1. 1. 3.3 Real Zeros of PolynomialsPhilippians 4:6-7 do not be anxious aboutanything, but in everything by prayer andsupplication with thanksgiving let your requestsbe made known to God. And the peace of God,which surpasses all understanding, will guardyour hearts and your minds in Christ Jesus.
2. 2. Rational Zeros Theorem
3. 3. Rational Zeros TheoremIf P(x) = an x + an−1 x n n−1 + an−2 x n−2 + ... + a1 x + a0has integral coefﬁcients, then every rational zero pof P(x) is of the form where q p is a factor of the constant term, and q is a factor of the leading coefﬁcient.
4. 4. Find all rational zeros of P(x) = x − 11x + 23x + 35 3 2
5. 5. Find all rational zeros of P(x) = x − 11x + 23x + 35 3 2 p 1 5 7 35 =± , , , q 1 1 1 1
6. 6. Find all rational zeros of P(x) = x − 11x + 23x + 35 3 2 p 1 5 7 35 =± , , , q 1 1 1 1 set the window on your grapher to [-35,35]
7. 7. Find all rational zeros of P(x) = x − 11x + 23x + 35 3 2 p 1 5 7 35 =± , , , q 1 1 1 1 set the window on your grapher to [-35,35] graph and test
8. 8. Find all rational zeros of P(x) = x − 11x + 23x + 35 3 2 p 1 5 7 35 =± , , , q 1 1 1 1 set the window on your grapher to [-35,35] graph and test (we are applying the Remainder Theorem here)
9. 9. Find all rational zeros of P(x) = x − 11x + 23x + 35 3 2 p 1 5 7 35 =± , , , q 1 1 1 1 set the window on your grapher to [-35,35] graph and test (we are applying the Remainder Theorem here) x = − 1, 5, 7
10. 10. Factor 3x − 4x − 13x − 6 3 2
11. 11. Factor 3x − 4x − 13x − 6 3 2This means we are looking for the zeros.
12. 12. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , ,q 1 1 1 1 3 3 3 3
13. 13. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3
14. 14. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 3
15. 15. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 2 3x=− 33x = −23x + 2 = 0
16. 16. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 2 3x=− 3 x = −13x = −23x + 2 = 0 x +1 = 0
17. 17. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 2 3x=− 3 x = −1 x=33x = −23x + 2 = 0 x +1 = 0 x−3= 0
18. 18. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 2 3x=− 3 x = −1 x=33x = −23x + 2 = 0 x +1 = 0 x−3= 0 (3x + 2)(x + 1)(x − 3)
19. 19. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 2 3x=− 3 x = −1 x=33x = −23x + 2 = 0 x +1 = 0 x−3= 0 ⎛ 2 ⎞ (3x + 2)(x + 1)(x − 3) Do not use ⎜ x + ⎟ ⎝ 3 ⎠
20. 20. Factor 3x − 4x − 13x − 6 3 2 This means we are looking for the zeros.p 1 2 3 6 1 2 3 6 =± , , , , , , , window: [-6,6]q 1 1 1 1 3 3 3 3 2 Zeros are: −1, − , 3 2 3x=− 3 x = −1 x=33x = −23x + 2 = 0 x +1 = 0 x−3= 0 ⎛ 2 ⎞ (3x + 2)(x + 1)(x − 3) Do not use ⎜ x + ⎟ ⎝ 3 ⎠
21. 21. 3Find the exact zeros of f (x) = x − 6x + 4
22. 22. 3Find the exact zeros of f (x) = x − 6x + 4 p = ± 1, 2, 4 standard window q
23. 23. 3Find the exact zeros of f (x) = x − 6x + 4 p = ± 1, 2, 4 standard window q graph and test
24. 24. 3Find the exact zeros of f (x) = x − 6x + 4 p = ± 1, 2, 4 standard window q graph and test x=2
25. 25. 3Find the exact zeros of f (x) = x − 6x + 4 p = ± 1, 2, 4 standard window q graph and test x=2 but then the other 2 roots must be irrational
26. 26. 3Find the exact zeros of f (x) = x − 6x + 4 p = ± 1, 2, 4 standard window q graph and test x=2 but then the other 2 roots must be irrational “exact zeros” ... no calculator!
27. 27. 3Find the exact zeros of f (x) = x − 6x + 4 p = ± 1, 2, 4 standard window q graph and test x=2 but then the other 2 roots must be irrational “exact zeros” ... no calculator!use synthetic division until it’s a quadratic then use the Quadratic Formula
28. 28. 3Find the exact zeros of f (x) = x − 6x + 4
29. 29. 3Find the exact zeros of f (x) = x − 6x + 4 2 1 0 -6 4 2 4 -4 1 2 -2 0
30. 30. 3Find the exact zeros of f (x) = x − 6x + 4 2 x + 2x − 2 2 1 0 -6 4 2 4 -4 1 2 -2 0
31. 31. 3 Find the exact zeros of f (x) = x − 6x + 4 2 x + 2x − 2 2 1 0 -6 4 −2 ± 4 − (4)(−2) 2 4 -4x= 2 1 2 -2 0
32. 32. 3 Find the exact zeros of f (x) = x − 6x + 4 2 x + 2x − 2 2 1 0 -6 4 −2 ± 4 − (4)(−2) 2 4 -4x= 2 1 2 -2 0 −2 ± 12x= 2
33. 33. 3 Find the exact zeros of f (x) = x − 6x + 4 2 x + 2x − 2 2 1 0 -6 4 −2 ± 4 − (4)(−2) 2 4 -4x= 2 1 2 -2 0 −2 ± 12x= 2 −2 ± 2 3x= 2
34. 34. 3 Find the exact zeros of f (x) = x − 6x + 4 2 x + 2x − 2 2 1 0 -6 4 −2 ± 4 − (4)(−2) 2 4 -4x= 2 1 2 -2 0 −2 ± 12x= 2 −2 ± 2 3x= 2x = −1 ± 3
35. 35. 3 Find the exact zeros of f (x) = x − 6x + 4 2 x + 2x − 2 2 1 0 -6 4 −2 ± 4 − (4)(−2) 2 4 -4x= 2 1 2 -2 0 −2 ± 12x= 2 x = 2, − 1 ± 3 −2 ± 2 3x= 2x = −1 ± 3
36. 36. Find the exact zeros of P(x) = x + 4x + 3x − 2 3 2
37. 37. Find the exact zeros of P(x) = x + 4x + 3x − 2 3 2 x = −2, − 1 ± 2
38. 38. 4 2Find all real zeros of f (x) = 10x − x + 4x − 6
39. 39. 4 2Find all real zeros of f (x) = 10x − x + 4x − 6 Doesn’t say exact ... approximations OK!
40. 40. 4 2Find all real zeros of f (x) = 10x − x + 4x − 6 Doesn’t say exact ... approximations OK! p → [ −6,6 ] standard window q
41. 41. 4 2Find all real zeros of f (x) = 10x − x + 4x − 6 Doesn’t say exact ... approximations OK! p → [ −6,6 ] standard window q graphing suggests 2 zeros ... they are:
42. 42. 4 2Find all real zeros of f (x) = 10x − x + 4x − 6 Doesn’t say exact ... approximations OK! p → [ −6,6 ] standard window q graphing suggests 2 zeros ... they are: x ≈ −1.03, .77 and the other two are imaginary
43. 43. HW #3“Never doubt that a small group of thoughtfulcommitted people can change the world; indeedit is the only thing that ever has.” Margaret Mead