Upcoming SlideShare
×

Like this presentation? Why not share!

# 07 lecture

## on Jun 23, 2013

• 171 views

### Views

Total Views
171
Views on SlideShare
171
Embed Views
0

Likes
0
5
0

No embeds

### Report content

• Comment goes here.
Are you sure you want to

## 07 lecturePresentation Transcript

• Introduction to TelecommunicationM J KhanLecture 07
• Menu• Frequency and frequency domain• Fourier Transform• Discrete Fourier Transform (DFT)• Signal Encoding Techniques• Bit Encoding Techniques
• Frequency• Frequency is the rate of change with respectto time.• Change in a short span of time means highfrequency.• Change over a long span of time means lowfrequency.
• Time domain VS Frequency domain
• Time domain VS Frequency domainA complete sine wave in the time domaincan be represented by one single spike inthe frequency domain.
• Time domain VS Frequency domain0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10-505100 10 20 30 40 50 60 70 80 90 1000123450 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10-50510
• Time domain VS Frequency domain0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10-505100 10 20 30 40 50 60 70 80 90 100012345
• Time domain VS Frequency domain0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10-505100 10 20 30 40 50 60 70 80 90 100012345
• Fourier AnalysisFourier analysis is a tool that changes a timedomain signal to a frequency domain signaland vice versa.
• Fourier SeriesEvery composite periodic signal can berepresented with a series of sine and cosinefunctions. The functions are integralharmonics of the fundamental frequency “f”of the composite signal. Using the series wecan decompose any periodic signal into itsharmonics.
• Fourier TransformFourier Transform gives the frequencydomain of a non-periodic time domain signal.
• Discrete Fourier Transform (DFT)We are living digital age where every signalis• Sampled• Of finite extentThe DFT is the sampled Fourier Transform.10/2)()(NtNstjetfsF
• Inverse DFTIn similar fashion we can transformfrequency domain to time domain10/2)(1)(NsNstjesFNtf
• ExampleLet]123543[)(tf10/2)()(NtNstjetfsFWe knowBy Applying we get]5.1962i1.0000-0205.1962i-1.0000-18[)(sF
• Frequency AnalysisFor more visit the web linkhttp://www.fourier-series.com/fourierseries2/DFT_tutorial.html
• Signal Encoding Techniques• Digital Data Analog Signal• Analog Data Analog Signal• Analog Data Digital Signal
• Digital Data Analog Signal
• Digital Data Analog Signals
• Digital Data Analog Signals
• Amplitude Shift Keying
• Frequency Shift Keying
• Phase Shift Keying
• Phase Shift Keying
• 4-PSK
• 8-PSK
• Quadrature amplitude modulation is acombination of ASK and PSK so that amaximum contrast between each signalunit (bit, dibit, tribit, and so on) isachieved.Note:
• The 4-QAM and 8-QAM collections
• Time domain for an 8-QAM signal
• 16-QAM collections
• Bit and baud
• Bit and baud rate comparisonModulation Units Bits/Baud Baud rate Bit RateASK, FSK, 2-PSK Bit 1 N N4-PSK, 4-QAM Dibit 2 N 2N8-PSK, 8-QAM Tribit 3 N 3N16-QAM Quadbit 4 N 4N32-QAM Pentabit 5 N 5N64-QAM Hexabit 6 N 6N128-QAM Septabit 7 N 7N256-QAM Octabit 8 N 8N
• Analog Data Analog SignalsAmplitude Modulation (AM)Frequency Modulation (FM)Phase Modulation (PM)
• Analog Data Analog Signal
• Analog Data Analog Signal
• Amplitude Modulation
• Angle Modulation
• Analog Data Digital Signal
• Pulse Code Modulation
• Pulse Code ModulationPCM involves following steps1. Sampling2. Quantization3. Coding
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Analog SignalTime (seconds)Levels
• Nyquist Sampling Theorem
• Nyquist SamplingTheoremFs = Fc/2
• Nyquist SamplingTheoremFs = Fc/2
• Nyquist SamplingTheoremFs = Fc
• Nyquist SamplingTheoremFs = Fc
• Nyquist SamplingTheoremFs = 1.5*Fc
• Nyquist SamplingTheoremFs = 1.5*Fc
• Nyquist SamplingTheoremFs = 2*Fc
• Nyquist SamplingTheoremFs = 2*Fc
• Nyquist SamplingTheoremFs = 4*Fc
• Nyquist SamplingTheoremFs = 4*Fc
• Nyquist SamplingTheoremFs = 6*Fc
• Nyquist SamplingTheoremFs = 6*Fc
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18SamplingTime (seconds)Levels
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18QuantizationTime (seconds)Levels
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18After SamplingTime (seconds)Levels
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18After QuantizationTime (seconds)Levels
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18001101000111100010011010101110111011101010011000100001111000100010000110CodingTime (seconds)Levels
• Delta Modulation
• Pulse Code ModulationDelta Modulation involves followingsteps1. Step up or Step down2. Coding
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Analog SignalTime (seconds)Levels
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Follow the DifferenceTime (seconds)Levels
• 1514131211109876543210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Coding1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0Time (seconds)Levels
• Bit Encoding
• 1 0 1 0 1 1 0 01Unipolar NRZNRZ-Inverted(DifferentialEncoding)BipolarEncodingDifferentialManchesterEncodingPolar NRZManchesterEncoding