Your SlideShare is downloading. ×
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Cbs anti migraine
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Cbs anti migraine

584

Published on

Published in: Health & Medicine
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
584
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CBS Serotonergic & Histaminergic system
  • 2. Case 1
    • Q-1
    • What is the case?
  • 3. A-1
    • Severe headache, vomiting, unilateral and throbbing.
    • This is case of migraine.
    • Types of Migraine.
    • Classical migraine :aura, nausea, vomiting, visual scotomas (severe, unilateral)
    • Common migraine : lacks aura.
  • 4.  
  • 5.  
  • 6. Pathophysiology of migraine.
      • Three fundamental views :
      • 1.The classical vascular theory.
      • 2.The brain hypothesis.
      • 3.The sensory nerve hypothesis
  • 7.
    • The classical vascular theory:
    • Initial humorally mediated intracerebral vasoconstriction causing aura.
    • Followed by extracerebarl vasodilatation phase causing headcahe.
  • 8.  
  • 9. The brain hypothesis
    • Links migraine to the phenomenon of cortical spreading depression.
    • Associated with disturbed ionic balance and high K + (potassium) concentration and reduced blood flow in depressed areas.
  • 10. The sensory nerve hypothesis
    • Activation of trigeminal nerve terminals in the meninges and extracranial vessels 
    • causes pain directly.
    • induction of inflammatory changes through the release of neuropeptide and calcitonin gene related peptide released into meningeal circulation.
  • 11. Over all Pathology of migraine
    • Migraine involves the trigeminal nerve distribution to intracranial (possible extracranial) arteries.
    • Calcitonin gene related peptide are extreme vasodilators.
  • 12.  
  • 13. Q-2
    • Why was Aspirin not effective in this case?
  • 14.  
  • 15. Q.3
    • Why was she prescribed:
    • Tab. Ergotamine tartarate 1mg + caffeine 100mg.
  • 16. A-3
    • Tab. Ergotamine tartarate
    • Ergot alkaloid
    • Act on several types of receptors.
    • (alpha adrenoceptor, serotonin receptor
    • 5-HT 1A & 5-HT ID and dopamine receptor).
    • Routes of Administration-
    • Oral, sublingual, rectal suppository, inhaler.
    • Caffeine + ergotamine tartrate- facilitates absorption.
  • 17. Side effects
    • Emesis,
    • vasoconstriction,
    • hypertension,
  • 18.  
  • 19.  
  • 20. Q-4
    • Importance of family history?
  • 21. A- 4
    • It can be inherited
  • 22. Q.5
    • Why was prescribed Inj. Diclofenac ?
  • 23. A-5
    • Non-selective non steroid
    • anti-inflammatory
    • MOA
    • SE
  • 24. Q-6
    • Tab Zolmitriptan
  • 25. A-6
    • It belongs to a group “Triptans”
    • Activate 5-HT 1D / 1B receptors on presynaptic trigeminal nerve ending to inhibit release of vasodilator peptides
    • Vasoconstrictor action of direct 5-HT agonist (triptan & ergot) may prevent vasodilation and stretching of pain endings.
  • 26. Other Triptans
    • Almotriptan,
    • Eletriptan
    • Frovatriptan
    • Naratriptan
    • Rizatriptan
    • Sumatriptan
  • 27. Treatment options of migraine
    • FOR ACUTE ATTACKS
    • Triptans
    • Ergot alkaloids.
    • NSAIDS.
    • Analgesic agents.
  • 28. FOR PROPHYLAXIS
    • Considered for patients that have attack of migraine more than 1 per month
    • 5HT2 receptors anatagonists.
    • Β - adrenoceptor blockers.
    • Calcium channel blockers.
    • Tricyclic Antidepressants.
    • Selective Serotonin Reuptake Inhibitors.
  • 29. Examples of drugs in other groups
    • 5HT2 receptors anatagonists.eg.pizotifen
    • Β - adrenoceptor blockers. eg Propranolol
    • Calcium channel blockers. eg.Nifedipine
    • Tricyclic Antidepressants.
    • eg: Amitriptyline,Imipramine,
    • Selective Serotonin Reuptake Inhibitors. eg: Fluoxetine, citalopram
  • 30.  
  • 31. Case 2
    • Q.1. What is the case?
    • Motion sickness
  • 32.  
  • 33.  
  • 34.  
  • 35.  
  • 36.
    • Q.2. Why was prescribed
    • tab. Meclizine?
  • 37.
    • H 1 antagonist.
    • Piperazine derivatives.
    • Uses - allergic reactions, motion sickness.
    • Side effects-
    • Sedative (interfere with safe operation of machinery)
    • Postural hypotension
  • 38. Anti-motion sickness drugs
    • Diphenhydramine
    • Dimenhydrinate
    • Cyclizine
    • Meclizine
    • Promethazine
  • 39.  
  • 40. Other H I - Blockers
    • Ist generation
    • Diphenhydramine
    • Chlorpheniramine and cyclizine
    • 2 nd generation
    • cetirizine
    • Fexofenadine
    • loratidine
  • 41. USES - H I - Blockers
    • Allergies
    • Hay fever
    • Urticaria
    • Anti -motion sickness
    • Management chemotherapy vomiting (diphenhydramine)
  • 42. Toxicity
    • Sedation
    • Antimscarinic effects- dry mouth, blurred vision.
    • Alpha-adrenoceptor block- orthostatic hypotesion
  • 43.  
  • 44.
    • Figure 1: Vestibular signals from the labyrinth are transferred to the vestibular nuclei (VN) through the vestibular afferents. Several pathways connect VN to other areas: signals can be transmitted: 1) to contralateral VN, 2) to the abducens nucleus (ABD) to produce the vestibulo-ocular reflex, 3) to higher brain centers to provide information about spatial orientation, or 4) to the spinal cord motor neurons that produce reflexes to stabilize posture.
  • 45.
    • The vestibular system is comprised of two types of sensors: the two otolith organs (the saccule and utricle), which sense linear acceleration (i.e., gravity and translational movements), and the three semicircular canals, which sense angular acceleration in three planes. The receptor cells of the otoliths and semicircular canals send signals through the vestibular nerve fibers to the neural structures that control eye movements , posture, and balance (Fig. 1 ).

×