Introducción a la Ingeniería Eld cap1
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Introducción a la Ingeniería Eld cap1

  • 891 views
Uploaded on

Conceptos básicos para los inicios de la Ingeniería Eléctrica y Electrónica

Conceptos básicos para los inicios de la Ingeniería Eléctrica y Electrónica

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
891
On Slideshare
891
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
14
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Curso Introducción a la Ingeniería EIE 140 Francisco Apablaza M. 2014 famapablaza@hotmail.com
  • 2. Programa: objetivos Objetivos Generales a) Entender y analizar los conceptos básicos de la Electricidad. b) Analizar y calcular las variables eléctricas básicas en un circuito. 2
  • 3. Programa: objetivos Objetivos Específicos a) Identificar las variables eléctricas de corriente, voltaje, resistencia y potencia de un circuito eléctrico b) Aplicar las leyes de Ohm, Kirchoff para analizar el comportamiento de un circuito eléctrico de corriente continua. c) Identificar las variables eléctricas de corriente, voltaje, resistencia y potencia de un circuito magnético. d) Aplicar las leyes de Ohm, Kirchoff para analizar el comportamiento de un circuito magnético. 3
  • 4. Programa: contenidos CAPITULO 1 CONCEPTOS FÍSICOS , UNIDADES Y NOTACIÓN 1.1 Introducción Ingeniería, Electricidad y Electrónica. Valores y conductas. Método científico y metodología de trabajo y estudio. 1.2 Sistemas de unidades (inglés, MKS, CGS, SI). 1.3 Notación científica y prefijos. 1.4 Conversión entre unidades del mismo sistema y entre otros sistemas. 1.5 Leyes de las unidades y símbolos. 1.6 Conceptos físicos de : potencia, trabajo y energía. 4
  • 5. Programa: contenidos CAPITULO 2 CORRIENTE Y TENSIÓN 2.1 El átomo y su estructura. 2.2 Formas de representar la estructura atómica. 2.3 Ionización, electrones de valencia. 2.4 Electrón, protón, carga eléctrica. 2.5 Fuerzas de origen eléctrico. 2.6 Ley de Coulomb. 2.7 Campo eléctrico y analogía campo gravitacional. 2.8 Diferencia de potencial gravitacional y diferencia de potencial eléctrico. 2.9 Formas de producir Fuerza Electro Motriz (FEM). 2.10 Fuentes fijas de Corriente Continua (pilas, acumuladores). 2.11 Corriente electrónica y corriente convencional. 2.12 Circuito eléctrico. 2.13 Analogía hidromecánica. 5
  • 6. Programa: contenidos CAPITULO 3 RESISTENCIA 3.1 Introducción. 3.2 Conductores y aisladores. 3.3 Semiconductores. 3.4 Ley de Ohm, característica y símbolo. 3.5 Características físicas, tipos de cables. 3.6 Analogía hidromecánica. 3.7 Efectos de la temperatura. 3.8 Tabla de calibre de conductores. 3.9 Tipos de resistores. 3.10 Código de colores. 3.11 Conductancia. 6
  • 7. Programa: contenidos CAPITULO 4 POTENCIA Y ENERGÍA ELÉCTRICA 4.1 Introducción. 4.2 Potencia eléctrica. 4.3 Potencia: disipada, suministrada y absorbida. 4.4 Energía eléctrica. 4.5 Rendimiento. 7
  • 8. Programa: contenidos CAPITULO 5 CIRCUITOS ELÉCTRICOS SERIE Y PARALELO 5.1 Introducción. 5.2 Ley de voltaje de Kirchhoff (LKV). 5.3 Ley de corriente de Kirchhoff (LKI). 5.4 Circuito abierto y corto circuito 5.5 Circuito serie y resistencia equivalente. 5.6 Divisor de tensión. 5.7 Circuito paralelo y resistencia equivalente. 5.8 Divisor de corriente. 5.9 Circuito serie - paralelo. 5.10 Fuente de tensión ideal y real. 5.11 Fuentes de tensión en serie. 5.12 Fuentes de tensión en paralelo. 8
  • 9. Programa: contenidos CAPITULO 6 FUENTES DE TENSIÓN Y FUENTES DE CORRIENTE 6.1 Introducción. 6.2 Fuentes de tensión. 6.3 Fuentes de corriente. 6.4 Conversión de fuentes. 6.5 Fuentes de tensión en serie. 6.6 Fuentes de tensión en paralelo. 6.7 Fuentes de corriente en paralelo. 6.8 Fuentes equivalentes de tensión y corriente. 9
  • 10. Programa: contenidos CAPITULO 7 RESOLUCIÓN DE REDES ELÉCTRICAS 7.1 Introducción. 7.2 Topología. 7.3 Resolución de circuitos aplicando las leyes de Kirchhoff (LKV, LKI). 7.4 Resolución de circuitos aplicando el método de mallas ó lazos. 7.5 Resolución de circuitos aplicando el método de nodos. 7.6 Efectos de V = 0 , I = 0 7.7 Redes con puente. 7.8 Transformaciones delta - estrella y estrella - delta. 10
  • 11. Programa: contenidos CAPITULO 8 TEOREMAS DE REDES ELÉCTRICA 8.1 Introducción. 8.2 Teorema de Superposición. 8.3 Teorema de Thèvenin. 8.4 Teorema de Norton. 8.5 Teorema de máxima potencia de transferencia. 11
  • 12. Programa: contenidos CAPITULO 9 CIRCUITOS MAGNETICOS 9.1 Introducción. 9.2 Teoría de weber ó de los dominios magnéticos. 9.3 Magnetismo, líneas de fuerza, polos magnéticos. 9.4 Campo magnético. 9.5 Corriente eléctrica a través de un conductor ( regla de la mano derecha ). 9.6 Electroimán. 9.7 Fuerza Magneto Motriz (FMM). 9.8 Intensidad de Campo Magnético. 9.9 Flujo Magnético. 9.10 Densidad de flujo. 9.11 Reluctancia 9.12 Permeabilidad y permeabilidad relativa. 9.13 Ciclo de Histéresis 9.14 Curvas de magnetización. 9.15 Ley de Ohm de circuitos magnéticos. 9.16 Entrehierros. 9.17 Circuitos magnéticos serie. 12
  • 13. Programa: contenidos CAPITULO 10 INTRODUCCIÓN A SISTEMAS 9.1 Sistema Eléctrico de Potencia. 9.2 Sistema de Distribución e Iluminación. 9.3 Sistema de Accionamiento y Electrónica de Potencia. 9.4 Sistema de Telecomunicaciones. 9.5 Sistema de Control e Instrumentación. 9.6 Sistema Computacional. 13
  • 14. Programa Evaluación: Al menos 3 pruebas acumulativas. Pruebas expres de corta duración y trabajos personales, que se promedian como una nota acumulativa. Trabajos manuscritos se califican el contenido, la presentación , ortografía y caligrafía. Nota de aprobación, presentación a examen y ponderación del examen, según reglamento. Durante las pruebas no se podrá utilizar notebook, tablet, ni celular. 14
  • 15. 15 Preguntas
  • 16. 16 CAPITULO 1 CONCEPTOS FÍSICOS, UNIDADES Y NOTACIÓN 1.1 Introducción Ingeniería, Electricidad y Electrónica. Valores y conductas. Método científico y metodología de trabajo y estudio.
  • 17. 17 Orientación La PUCV: desde 21 de septiembre del año 1925 http://www.ucv.cl/ La EIE: Electricidad y Electrónica ¿diferencia? http://eie.ucv.cl/escuela/ : reglamento Navegador Académico: https://nave10.ucv.cl//index.php Aula Virtual: comunicaciones y material http://aula.virtual.ucv.cl/wordpress/
  • 18. 18 ¿ Qué es Ingeniería ?
  • 19. 19 El origen etimológico de la palabra ingeniería viene del vocablo latino ingenium. Un término que puede traducirse como “producir”. La ingeniería es el estudio y la aplicación de las distintas ramas de la tecnología. El profesional en este ámbito recibe el nombre de ingeniero. Ingeniería
  • 20. 20 La actividad del ingeniero supone la concreción de una idea en la realidad. Esto quiere decir que, a través de técnicas, diseños y modelos, y con el conocimiento proveniente de las ciencias, la ingeniería puede resolver problemas y satisfacer necesidades humanas. La ingeniería también supone la aplicación de la inventiva y del ingenio para desarrollar una cierta actividad. Esto, por supuesto, no implica que no se utilice el método científico para llevar a cabo los planes. Ingeniería
  • 21. El Mundo Laboral Las Competencias Duras Blandas • Cualidades • Fortalezas • Formación • Habilidades 21
  • 22. Las Competencias Duras: Blandas • Cualidades • Fortalezas • Formación • Habilidades • Formación Básica • Formación Ingenieril (Modelamiento) • Formación Técnica • Autonomía • Autoaprendizaje El Mundo Laboral 22
  • 23. Las Competencias Duras Blandas: conductuales: • Cualidades • Fortalezas • Formación • Habilidades • Responsabilidad • Iniciativa • Trabajo en Equipo • Motivación • Adaptación al medio • Liderazgo • Expresión-Comunicación • Autoestima • Honestidad • Respeto...valores >>> El Mundo Laboral 23
  • 24. Valores Humildad Tolerancia Ecuanimidad Escuchar mas que oir Honestidad Iniciativa Responsabilidad El Mundo Laboral 24
  • 25. Valores El secreto de la sabiduría, del poder y del conocimiento es la humildad. Ernest Hemingway (1896-1961) Escritor estadounidense. Uno debe ser tan humilde como el polvo para poder descubrir la verdad. Mahatma Gandhi (1869-1948) Político y pensador indio. El Mundo Laboral 25
  • 26. Valores Exígete mucho a ti mismo y espera poco de los demás. Así te ahorrarás disgustos. Confucio (551 AC-478 AC) Filósofo chino. El Mundo Laboral ¿ Empresas Nacionales e Internacionales ? 26
  • 27. Método científico Antes de que se concibiera el método científico, la acumulación de conocimientos se hacía a partir de la meditación y observaciones casuales. Debieron pasar siglos para darse cuenta de que este camino era un callejón sin salida que no producía más que preguntas equivocadas. Y no fue hasta que se estableció el método científico que la ciencia inició su crecimiento y se empezó a expandir nuestro conocimiento de las leyes naturales. 27
  • 28. 28
  • 29. 29
  • 30. Metodología de trabajo y estudio Planificar el tiempo Priorizar Lectura, escritura, ejercitación Concentración. Sin distracciones Resúmenes Trabajo en equipo Aprender a aprender http://www.psicopedagogia.com/tecnicas-de-estudio/metodo 30
  • 31. 31
  • 32. 32
  • 33. Fuentes Biblioteca Internet jamas : copiar y pegar Apuntes: anotar, redactar, escribir Compañeros: trabajo en equipo 33
  • 34. CAPITULO 1 CONCEPTOS FÍSICOS, UNIDADES Y NOTACIÓN 1.2 Sistemas de unidades (inglés, MKS, CGS, SI). 34
  • 35. MAGNITUDES, MEDIDAS Y UNIDADES 35 Son Ciencias experimentales aquellas que por sus características y, particularmente por el tipo de problemas de los que se ocupan, pueden someter sus afirmaciones o enunciados al juicio de la experimentación. En un sentido científico la experimentación hace alusión a una observación controlada; en otros términos, experimentar es reproducir en el laboratorio el fenómeno en estudio con la posibilidad de variar a voluntad y de forma precisa las condiciones de observación.
  • 36. MAGNITUDES, MEDIDAS Y UNIDADES 36 El trabajo científico se apoya en la realización de medidas que facilitan una descripción de los fenómenos en términos de cantidad. La medida constituye entonces una operación clave en las ciencias experimentales. MAGNITUDES Y MEDIDA El físico inglés Kelvin consideraba que solamente puede aceptarse como satisfactorio nuestro conocimiento si somos capaces de expresarlo mediante números. La operación que permite expresar una propiedad o atributo físico en forma numérica es precisamente la medida.
  • 37. Magnitud, cantidad y unidad La noción de magnitud está inevitablemente relacionada con la de medida. Se denominan magnitudes a ciertas propiedades o aspectos observables de un sistema físico que pueden ser expresados en forma numérica. En otros términos, las magnitudes son propiedades o atributos medibles. 37 MAGNITUDES, MEDIDAS Y UNIDADES
  • 38. Hay Magnitudes: escalares y vectoriales La medida como comparación La medida de una magnitud física supone, la comparación del objeto que encarna dicha propiedad con otro de la misma naturaleza que se toma como referencia y que constituye el patrón. 38 MAGNITUDES, MEDIDAS Y UNIDADES
  • 39. Cuando se ha elegido ese conjunto reducido y completo de magnitudes fundamentales y se han definido correctamente sus unidades correspondientes, se dispone entonces de un sistema de unidades. La definición de unidades dentro de un sistema se atiene a diferentes criterios. 39 MAGNITUDES, MEDIDAS Y UNIDADES
  • 40. 40 MAGNITUDES, MEDIDAS Y UNIDADES
  • 41. Un sistema de unidades es un conjunto consistente de unidades de medida. Definen un conjunto básico de unidades de medida a partir del cual se derivan el resto. Existen varios sistemas de unidades:  Sistema Internacional de Unidades o SI: es el sistema más usado. Sus unidades básicas son: el metro, el kilogramo, el segundo, el ampere, el kelvin, la candela y el mol. Las demás unidades son derivadas del Sistema Internacional. 41 MAGNITUDES, MEDIDAS Y UNIDADES http://www.bipm.org/
  • 42.  Sistema métrico decimal: primer sistema unificado de medidas.  Sistema cegesimal o CGS: denominado así porque sus unidades básicas son el centímetro, el gramo y el segundo.  Sistema Natural: en el cual las unidades se escogen de forma que ciertas constantes físicas valgan exactamente 1.  Sistema anglosajón de unidades: aún utilizado en algunos países anglosajones. Muchos de ellos lo están reemplazando por el Sistema Internacional de Unidades. 42 MAGNITUDES, MEDIDAS Y UNIDADES
  • 43. 43 MAGNITUDES, MEDIDAS Y UNIDADES
  • 44. 44 MAGNITUDES, MEDIDAS Y UNIDADES
  • 45. 45 MAGNITUDES, MEDIDAS Y UNIDADES
  • 46. 46 MAGNITUDES, MEDIDAS Y UNIDADES
  • 47. 47 MAGNITUDES, MEDIDAS Y UNIDADES
  • 48. 48 MAGNITUDES, MEDIDAS Y UNIDADES
  • 49. 49 MAGNITUDES, MEDIDAS Y UNIDADES
  • 50. Exactitud, Precisión y error 50 Todas las medidas están afectadas en algún grado por un error experimental debido a las imperfecciones inevitables del instrumento de medida, o las limitaciones impuestas por nuestros sentidos que deben de registrar la información. MAGNITUDES, MEDIDAS Y UNIDADES
  • 51. LO FUNDAMENTAL ES SER CONSECUENTE CON UN SISTEMA DE UNIDADES EN TODO EL CALCULO. 51
  • 52. http://www.sc.ehu.es/sbweb/fisica/uni dades/unidades/unidades.htm http://ocw.uv.es/ciencias/fisica/clase1. pdf http://www.sc.ehu.es/sbweb/fisica/uni dades/medidas/medidas.htm 52 MAGNITUDES, MEDIDAS Y UNIDADES
  • 53. CAPITULO 1 CONCEPTOS FÍSICOS, UNIDADES Y NOTACIÓN 1.3 Notación científica y prefijos. 53
  • 54. NOTACIÓN CIENTÍFICA Y PREFIJOS La notación científica o notación exponencial es un modo conciso de anotar números mediante potencias de diez, esta notación es utilizada en números demasiado grandes o demasiado pequeños. ej: la masa de un protón (aproximadamente 1.67×10^-27 kilogramos), la distancia a los confines observables del universo (aproximadamente 4.6×10^26 metros). 54 http://quiz.uprm.edu/tutorial_es/scno/sn_right.html
  • 55. 55 NOTACIÓN CIENTÍFICA Y PREFIJOS
  • 56. 56 NOTACIÓN CIENTÍFICA Y PREFIJOS
  • 57. 57 NOTACIÓN CIENTÍFICA Y PREFIJOS
  • 58. http://www.bipm.org/fr/si/si_brochure/chap ter3/prefixes.html 58 Facteur Nom Symbole Facteur Nom Symbole 101 déca da 10–1 déci d 102 hecto h 10–2 centi c 103 kilo k 10–3 milli m 106 méga M 10–6 micro µ 109 giga G 10–9 nano n 1012 téra T 10–12 pico p 1015 péta P 10–15 femto f 1018 exa E 10–18 atto a 1021 zetta Z 10–21 zepto z 1024 yotta Y 10–24 yocto y Préfixes SI NOTACIÓN CIENTÍFICA Y PREFIJOS
  • 59. CAPITULO 1 CONCEPTOS FÍSICOS, UNIDADES Y NOTACIÓN 1.4 Conversión entre unidades del mismo sistema y entre otros sistemas. 1.5 Leyes de las unidades y símbolos. 59 EJERCITAR
  • 60. CAPITULO 1 CONCEPTOS FÍSICOS, UNIDADES Y NOTACIÓN 1.6 Conceptos físicos de : potencia, trabajo y energía. 60
  • 61. El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos = fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para actuar, transformar o poner en movimiento. En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural. 61 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 62.  Todos los cuerpos tienen energía.  Es la capacidad de generar un trabajo.  Energía es una magnitud abstracta que está ligada al estado dinámico de un sistema cerrado y que permanece invariable con el tiempo. 62 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 63.  La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.  La energía se manifiesta en los cambios físicos, por ejemplo, al elevar un objeto, transportarlo, deformarlo o calentarlo.  La energía está presente también en los cambios químicos, como al quemar un trozo de madera o en la descomposición de agua mediante la corriente eléctrica. 63 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 64. Hay las energías renovables, como la energía eólica, la energía hidráulica, la energía solar, y las no renovables, como el carbón, el gas natural, el petróleo, la energía atómica. 64 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 65.  Energía: capacidad de un cuerpo o sistema para ejercer fuerzas sobre otros cuerpos o sistemas o entre sus propios subsistemas.  Si las fuerzas ocasionan variaciones temporales microscópicas y desordenadas, hay transmisión de energía en forma de calor. Si las variaciones son macroscópicas o microscópicas ordenadas (fenómenos eléctricos y magnéticos) hay transmisión de energía en forma de trabajo. 65 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 66. La unidad de energía en el Sistema Internacional es el joule (J), que se define como el trabajo realizado por una fuerza de un newton en un desplazamiento de un metro en la dirección de la fuerza Donde N representa newtons; m, metros; kg: kilogramos; s: segundos 66
  • 67. Leyes de la termodinámica 67  1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 68. SEGUNDA LEY: El flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico. 68 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 69. TERCERA LEY: La tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. 69 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 70. Tipos de energía  Energía eléctrica  Energía luminosa  Energía mecánica  Energía térmica  Energía eólica  Energía solar  Energía nuclear  Energía cinética  Energía potencial  Energía química  Energía hidráulica  Energía sonora  Energía radiante  Energía fotovoltaica  Energía de reacción  Energía iónica  El petróleo como energía  El gas natural como energía  El carbón como energía  Energía geotérmica  Energía mareomotriz  Energía electromagnética  Energía metabólica  Biomasa  Energía hidroeléctrica  Energía biovegetal  Energía marina  Energía libre  Energía magnética  Energía calorífica 70 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 71. Energía potencial La energía potencial es energía almacenada que existe dentro de un objeto 71
  • 72. 72 Las diferentes formas de energía se dividen en 2 tipos: potencial y cinética. Energía cinética
  • 73. Energía mecánica Energía almacenada debido a su posición. Las bandas de goma y resortes son buenos ejemplos de energía almacenada mecánica 73
  • 74. Energía nuclear Las plantas de energía nuclear dividen átomos en un proceso llamado fisión 74
  • 75. Energía química La energía almacenada en los alimentos, madera, carbón, petróleo pilas, etcétera. 75
  • 76. Energía gravitacional Energía almacenada como consecuencia de la gravedad. 76
  • 77. Energía eléctrica Energía producida cuando algo altera el equilibrio o fuerza entre los electrones de los átomos 77
  • 78. Energía lumínica La energía lumínica son la ondas que emiten energía. 78
  • 79. Energía térmica A partir del calor. Un objeto caliente genera radiación en forma de energía térmica 79
  • 80. Energía hidráulica Es la energía del agua en movimiento 80
  • 81. Energía sonora Es la que se obtiene por la vibración o perturbación de un cuerpo generando ondas acústicas que se transfiere por un medio fisico. 81
  • 82. Energía eolica La energía del viento en movimiento 82
  • 83. Energía calorífica Esta energía implica que los átomos tienen una determinada energía cinética a la que nosotros le llamamos calor 83
  • 84. Energía magnética Esta energía se manifiesta en nuestro planeta o en los imanes naturales 84
  • 85. Energía hidroeléctrica Este energía se obtiene mediante la caída de agua desde una determinada altura. 85
  • 86. Energía metabólica Este tipo de energía llamada metabólica es el conjunto de reacciones y procesos físicos-químicos que ocurren en una célula 86
  • 87. Energía electromagnética Es la energía de la cantidad de energía almacenada en un cuerpo magnético 87
  • 88. Energía iónica La cantidad de energía que se necesita para separar el electrón menos fuerte unido a un átomo neutro gaseoso de su estado fundamental 88
  • 89. Energía marina Cuando algo se mueve está realizando un trabajo y para hacer ese trabajo se necesita energía 89
  • 90. Energía libre Parte de la energía total de un cuerpo susceptible de transformarse produciendo trabajo 90
  • 91. Energía biovegetal Un producto biovegetal como la madera produce energía en su combustión 91
  • 92. Energía fotovoltaica De la transformación de la luz solar en energía eléctrica 92
  • 93. Energía solar La energía solar es la energía obtenida mediante la captación de la luz del sol 93
  • 94. Biomasa La biomasa se considera como tal de todas las materias orgánica de origen vegetal o animal 94
  • 95. 95 Formas de energía La energía se puede presentar en la naturaleza de diferentes formas: – Energía mecánica: Se debe al movimiento o a la posición que ocupa un cuerpo. – Energía térmica: Es la que se desprende en la combustión de los cuerpos. – Energía eléctrica: Se origina por el movimiento de los electrones en el interior de materiales conductores. – Energía radiante: Es la que emiten los cuerpos. – Energía química: La que se pone de manifiesto en las reacciones químicas. – Energía nuclear: Se libera en las reacciones de fusión y fisión nuclear. – Energía interna: Se debe al movimiento interno de las partículas que constituyen la materia.
  • 96. Física y Química 4ºESO IES "JABALCUZ" JAÉN 96 Energía mecánica Es la que poseen los cuerpos en función de su estado de movimiento o de la posición que ocupan en el espacio. Se estudia bajo dos aspectos: energía cinética y energía potencial.
  • 97. 97 Energía cinética Energía cinética: Es la que se manifiesta en un cuerpo debido al movimiento que realiza. Se define como “la capacidad que tiene un cuerpo para realizar un trabajo mediante el movimiento”. 2 · 2 vm Ec 
  • 98. 98 Relación entre trabajo y energía cinética Al aplicar un trabajo sobre un cuerpo (fuerza x desplazamiento) se observa que éste cambia su velocidad, por lo que podemos deducir que cambia su Energía cinética. Trabajo = Variación de Ec= ΔEC= EC2 – EC1
  • 99. Física y Química 4ºESO IES "JABALCUZ" JAÉN 99 Energía potencial Energía potencial: es la que posee un cuerpo en virtud de la posición que ocupa con respecto a un sistema de referencia. La podemos estudiar bajo dos aspectos: energía potencial gravitatoria y energía potencial elástica.
  • 100. 100 Energía potencial gravitatoria Es el trabajo que se realiza para elevar un cuerpo hasta una determinada altura. Epg= m·g·h La altura de referencia que tomamos es la superficie de la Tierra. Por tanto, en un desplazamiento horizontal no cambiará su valor. ¿Qué energía potencial tendrá una persona de 50 kg de masa situada a una altura de 10 m?
  • 101. 101 Energía potencial elástica Es la que posee un cuerpo elástico debido a su estado de tensión. Para los cuerpos que se deformen cumpliendo la ley de Hooke, la energía potencial elástica que almacena aumenta con el cuadrado de la deformación. Cuanto más se separa el cuerpo de su posición de equilibrio, mayor es la energía potencial elástica que acumula. K es una constante propia del material con el que se hace el cuerpo. 2 2 xk Ep 
  • 102. 102 Conservación de la Energía Mecánica “La suma de la Energía cinética más la Energía potencial que posee un cuerpo se mantiene constante”. Es decir, lo que aumente una de ellas, disminuye la otra. Emecánica = constante Ecinética + Epotencial = Emecánica
  • 103. 103 Energía del Universo “La energía total que existe en el universo es constante” “La energía ni se crea ni se destruye, sólo se transforma de una en otra” En todos los procesos hay intercambio de energía, pero la suma de todos los tipos permanece constante. Aunque, hay ciertas formas de energía que se pueden aprovechar menos y se denominan energías degradadas.
  • 104. La palabra trabajo tiene un significado en física muy diferente al que se utiliza en la vida ordinaria. En la vida ordinaria, trabajo es equivalente a "esfuerzo"; en física, para que haya trabajo, es preciso una fuerza sobre un objeto y un desplazamiento de éste. 104 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 105. 105 ¿Qué es trabajo?  Llamamos trabajo al producto de una fuerza por el desplazamiento que produce.  Si una persona lleva colgada la mochila, pero no se mueve del lugar donde está NO realiza trabajo físico. Lo que hace es un esfuerzo muscular.  Llamamos energía a la capacidad que tienen los cuerpos para producir transformaciones o para realizar un trabajo.  El trabajo y la energía se miden en las mismas unidades.  Cuando un cuerpo realiza un trabajo, pierde energía, que la gana el cuerpo sobre el que se realiza el trabajo. La variación de energía que tiene lugar es igual al trabajo realizado. Trabajo = variación de Energía ( ΔE)
  • 106. 106 Trabajo de una fuerza constante Llamamos trabajo al producto escalar de la fuerza aplicada sobre un cuerpo por el desplazamiento que le produce.(Ya hemos dicho que si no hay desplazamiento no hay trabajo). W = F·x·cos α α es el ángulo que forma la dirección de la fuerza con la dirección del desplazamiento. En el S.I. la unidad de trabajo se llama julio (J), que equivale al trabajo realizado por una fuerza de 1N cuando el cuerpo se desplaza 1m en la misma dirección. 1 julio = 1 newton x 1 metro
  • 107. La potencia es la cantidad de trabajo que se realiza por unidad de tiempo. Puede asociarse a la velocidad de un cambio de energía dentro de un sistema, o al tiempo que demora la concreción de un trabajo. Por lo tanto, es posible afirmar que la potencia resulta igual a la energía total dividida por el tiempo. 107 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 108. 108 Concepto de Potencia  Es el cociente entre el trabajo realizado y el tiempo que se tarda en realizarlo.  La unidad de potencia en el SI es el vatio o watt (w), que se define como la potencia necesaria para realizar un trabajo de un julio en un segundo. )( )( st JW invertidotiempo realizadoTrabajo Potencia  s J w segundo julio vatio 1 1 1 1 1 1 
  • 109. En Física, potencia es la cantidad de trabajo efectuado por unidad de tiempo. Esto es equivalente a la velocidad de cambio de energía en un sistema o al tiempo empleado en realizar un trabajo, según queda definido por: P = dE / dt donde P es la potencia E es la energía o trabajo t es el tiempo. 109 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 110. CONCEPTO DE POTENCIA (P) MECÁNICA Flujo de energía (Transferencia o Conversión) que cosiste en la aplicación de una fuerza a un punto con velocidad en la dirección de la fuerza. Se llama trabajo W a la energía que fluye de esta manera. 110 P se mide en newton*m/s = vatio (watt) Un P=1watt actuando durante 1 segundo se dice que transfiere 1 julio de energía en forma de trabajo. 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 111. 111 CONCEPTO DE TRABAJO (W) Energía transferida mediante una potencia mecánica (P) 1.6 Conceptos físicos de : potencia, trabajo y energía.
  • 112. 112 Rendimiento Llamamos rendimiento al cociente entre la potencia real suministrada y la potencia teórica. » Rendimiento = Otras Unidades de Trabajo y Potencia.  Trabajo: Kilovatio-hora (Kw·h) Equivale a 3.600.000 julios. Se utiliza mucho en la factura de la electricidad.  Potencia: Caballo de vapor (C.V. ó H.P. ) Equivale a 736 vatios. Se utiliza para indicar la potencia de las máquinas. 100· teóricapotencia realpotencia
  • 113. 113 Máquinas simples Son dispositivos o conjuntos de piezas que transmiten fuerzas y consiguen alguno de los siguientes efectos: – Varían la intensidad (módulo) de la fuerza. – Modifican su dirección. – Transforman un tipo de energía en otro. Condición de Equilibrio “Trabajo de la fuerza motriz es igual al trabajo de la fuerza resistente” FMotriz·a = Fresistente·b
  • 114. 114 Tipos de máquinas simples Las máquinas simples son conocidas y utilizadas desde la antigüedad y las más sencillas son:  Palanca  Polea  Plano inclinado o pendiente  Tornillo
  • 115. 115 Palanca Es una máquina simple que varía la intensidad de la fuerza transmitida. Distinguimos los siguientes elementos: – Punto de aplicación de la fuerza motriz. (FM) – Punto de aplicación de la resistencia. (FR) – Punto de apoyo de la palanca. FULCRO – Brazo de la FM (a): distancia de ésta al fulcro. – Brazo de la FR (b): distancia de ésta al fulcro. FM·a = FR·b
  • 116. 116 Tipos de Palancas Según la posición del fulcro, la FM y la FR, las palancas se clasifican en:  Palanca de primer género.  Palanca de segundo género.  Palanca de tercer género. En las tres se cumple la condición de equilibrio de las máquinas simples.
  • 117. 117 Palanca de primer género El fulcro está situado entre la fuerza motriz y la fuerza resistente.
  • 118. 118 Palanca de segundo género La FR está entre la fuerza motriz y el fulcro.
  • 119. 119 Palanca de tercer género La fuerza motriz se sitúa entre el fulcro y la fuerza resistente.
  • 120. 120 Poleas  Son ruedas que se utilizan para elevar cuerpos mediante cuerdas o cadenas que transmiten la fuerza.  Polea fija Sólo cambia la dirección de la fuerza aplicada para hacer más cómodo el esfuerzo.  Polea móvil (Poliplasto) Es un conjunto de poleas enlazadas que permiten disminuir la fuerza motriz que debemos aplicar. FM = FR/n n = número de poleas
  • 121. 121 Plano inclinado Es una línea que une un punto con otro situado a mayor altura, formando un ángulo con la horizontal. Disminuye la FM a cambio de recorrer una distancia mayor. FM x longitud = FR x altura
  • 122. 122 Tornillo Son una variante del plano inclinado. La rampa se enrolla en el cilindro central. La fuerza motriz se aplica en la cabeza y la resistencia se vence con la punta del tornillo. FM x radio de la cabeza = FR x paso de rosca
  • 123. 123 Calor y energía térmica Escalas de Temperaturas  Llamamos calor a la transferencia de energía que tiene lugar de un cuerpo caliente (temperatura mayor) a otro frío (temperatura menor) cuando se ponen en contacto. Por tanto, calor es un proceso de intercambio de energía, similar al trabajo.  Temperatura es una medida de la agitación térmica de un cuerpo, es decir, de la energía cinética de las partículas que lo forman. A mayor energía cinética de las partículas, mayor movimiento de éstas y mayor temperatura.  En la actualidad se utilizan tres escalas de temperatura: Fahrenheit, Celsius o centígrada y absoluta. Se diferencian en la elección del punto 0 y en la escala.
  • 124. 124 Escalas de Temperaturas
  • 125. 125 Escalas de Temperaturas Si llamamos C a la temperatura en grados centígrados, F a la temperatura en grados Fahrenheit y K a la temperatura Kelvin, la relación entre ellas es: Cuando dos cuerpos están a la misma temperatura, diremos que se encuentran en equilibrio térmico. 100 273 180 32 100     KFC
  • 126. 126 Calor en intervalo de T  Cantidad de calor transferida en un intervalo de temperatura: El calor que se transfiere de un cuerpo caliente a otro frío es:  donde Q es el calor; m la masa de la sustancia; c la capacidad calorífica y t2 y t1 las temperaturas inicial y final.  Se llama capacidad calorífica específica o calor específico de una sustancia a la energía necesaria para elevar un grado la temperatura de 1 kg de dicha sustancia. Se mide en J/kg·ºC ó J/kg·K. El calor específico de una sustancia se determina en un calorímetro. )·(· 12 ttcmQ 
  • 127. 127 Calor en cambios de estado Cantidad de calor transferida en un cambio de estado: Es la cantidad de energía que se transfiere a 1kg de una sustancia pura para cambiar de estado, a una presión fija y a la temperatura del cambio de estado. Fusión: Vaporización: fLmQ · vLmQ ·
  • 128. 128 Otros efectos del calor Dilatación en sólidos: lineal: lt = l0(1 + λ·t) λ es el coeficiente de dilatación lineal. superficial: st = s0(1 + β·t) β es el coeficiente de dilatación superficial. cúbica: vt = v0(1 + γ·t) γ es el coeficiente de dilatación cúbica. Dilatación en líquidos: Los líquidos sólo tienen dilatación cúbica. Es difícil medirla, porque a la vez se dilata el recipiente que los contiene. Dilatación en gases: Se dilatan mucho más que los sólidos y que los líquidos. En el tema 4 estudiamos la relación entre presión, volumen y temperatura de un gas. ' ''·· ··· T VP T VP óTRnVP 
  • 129. 129 Transmisión del calor conducción: es el proceso de transmisión del calor en sólidos. convección: es el proceso de transmisión del calor en líquidos radiación: es el proceso de transmisión del calor en gases.
  • 130. 130 Equivalente mecánico del calor “Cuando una cierta cantidad de energía mecánica se consume en un sistema se produce una cantidad idéntica en forma de energía térmica (calor)”; en otras palabras “el trabajo realizado por un sistema material se disipa en forma de calor” W=Q Caloría: es la cantidad de calor necesaria para elevar un grado la temperatura de 1 gramo de agua. 1 cal = 4,18 J 8 → 1 J = 0,24 cal
  • 131. 131 Degradación de la energía Degradación de la energía: Hemos visto que el calor es una forma de energía (energía térmica), de manera que cualquier tipo de energía se puede convertir en calor. Pero la inversa es difícil, y no se consigue convertir el calor en otros tipos de energía al 100%. Por este motivo al calor se le llama energía degradada, ya que no se puede aprovechar por completo. Los procesos que cumplen el principio de conservación de la energía, pero cuyo proceso inverso nunca ocurre se llaman procesos irreversibles.
  • 132. 132 Máquinas térmicas Máquinas térmicas: Son dispositivos que pueden transformar la energía térmica en otras formas de energía, mecánica o eléctrica. Las más conocidas son: máquina de vapor, turbina de vapor y motor de explosión o combustión interna.
  • 133. 133 Máquina y turbina de vapor Una máquina de vapor transforma en energía mecánica la energía calorífica que se desprende en la combustión.
  • 134. 134 Motor de combustión El combustible es quemado dentro del motor, comprimiendo antes los gases. El gas resultante empuja el émbolo que toma un movimiento alternativo y rotatorio mediante una biela y una manivela.
  • 135. 135 Central Térmica
  • 136. documentación Aula Cronología de EIE ¿Qué es ingeniería? El método científico Sistemas de Unidades Notación Científica Sistema Internacional de unidades Energía, Trabajo y Potencia 136
  • 137. FIN 137