Your SlideShare is downloading. ×
0
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Sistema Escalável para Processamento de Vídeo
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Sistema Escalável para Processamento de Vídeo

968

Published on

Este trabalho tem como objetivo desenvolver um sistema distribuído em uma plataforma cluster para processamento de vídeo, visando modelar uma arquitetura escalável que proporcione um alto poder de …

Este trabalho tem como objetivo desenvolver um sistema distribuído em uma plataforma cluster para processamento de vídeo, visando modelar uma arquitetura escalável que proporcione um alto poder de processamento, ou seja, que tenha capacidade de absorver mais recursos computacionais de maneira que o desempenho aumente proporcionalmente à inserção destes novos recursos. A paralelização de processamento de vídeo torna-se interessante quando a demanda é muito grande. Desta maneira, é possível reduzir tempo gasto para computar uma grande quantidade de dados e beneficiar à quem possa utilizar este sistema.

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
968
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Sistema Escalável para Processamento de Vídeo Orientado: Fábio R. Roman Orientador: Maurício A. Pillon
  • 2. Tópicos
    • Introdução;
    • Computação Paralela;
    • Processamento de Imagens;
    • Trabalhos Correlatos;
    • Proposta de um Sistema Escalável para processamento de vídeo;
    • Considerações Finais.
  • 3. Introdução
    • A cada dia cresce mais a utilização de dados no formato de vídeo:
      • Gravação de filmes;
      • Propagandas para publicidade;
      • Filmagens espaciais;
      • Filmagens caseiras;
      • ...
    • Principais motivos:
      • Aumento da capacidade de armazenamento dos computadores;
      • Diminuição dos custos financeiros dos dispositivos digitais para gravação de vídeos.
    • Processar uma grande demanda de dados exige que os recursos computacionais sejam cada vez mais poderosos (GUAN; KUNG; LARSEN, 2005);
    • Possível solução: Computação Paralela.
  • 4. Objetivo Geral
    • Desenvolver um sistema escalável para processamento de vídeo, baseado em um sistema de processamento de vídeo distribuído através de seu fracionamento em GOP escalonados em uma plataforma cluster .
  • 5. Objetivos Específicos
    • Realizar estudo sobre processamento de imagens ;
    • Realizar estudo sobre programação paralela ;
    • Realizar um estudo sobre avaliação de desempenho ;
    • Modelar um sistema escalável para processamento de vídeo;
    • Implementar o sistema;
    • Testar o sistema desenvolvido;
    • Analisar os resultados obtidos.
  • 6. Motivação
    • Um sistema escalável para processamento de vídeo poderá trazer diversos benefícios a um custo monetário relativamente baixo, pois a medida que as aplicações necessitem de mais poder computacional, mais recursos poderiam ser inseridos ao sistema.
    • Aumentar proporcionalmente o desempenho de uma aplicação ( eficiência ), conforme os recursos são inseridos no sistema.
    • Concluir uma tarefa em um tempo inferior em comparação com um sistema com menor número de recursos computacionais.
  • 7. Computação Paralela
    • Princípio: realizar vários cálculos simultaneamente , onde uma tarefa maior pode ser dividida em partes menores para serem executadas concorrentemente e assim concluir um objetivo mais rapidamente (FERREIRA, 2006) .
    • Conforme Flynn, existem duas categorias principais de máquinas paralelas com múltiplos fluxos de instruções e múltiplos fluxos de dados, a arquitetura de multiprocessadores e multicomputadores (EL-REWINI; ABD-EL-BARR, 2005) .
    • Multicomputadores  Cluster .
    • Cluster  Troca de Mensagens  MPI ( Message Passing Interface )
  • 8. Computação Paralela
    • Arquiteturas de Sistemas Distribuídos:
      • Par-a-par;
      • Cliente/Servidor;
        • Mestre/Escravo;
    • Sistemas de Arquivos Distribuídos:
      • Objetivo: Fornecer a um cluster uma área de armazenamento permanente com alta capacidade e que forneça uma visão homogênea dos dados para todos os nós. (KASSICK, 2010)
  • 9. Sistemas de Arquivos Distribuídos Descentralizada dNFSp ( Distributed NFSp) Descentralizada dNFSp2 Escritas Centralizadas/ Leituras Descentralizadas NFSp (NFS Parallel ) Centralizada NFS ( Network File System ) Descentralizada Google File System (GFS) Descentralizada Global File System Arquitetura Sistema
  • 10. Sistemas de Arquivos Distribuídos
    • dNFSp: (KASSICK; BOITO; NAVAUX, 2009)
      • Implementado sobre o protocolo NFS ;
      • Meta-servidores: Armazenam os metadados;
      • Servidores de dados : Armazenam os dados;
      • Acesso transparente;
      • Replicação;
      • Consistência;
  • 11. Processamento de Imagens
    • Processar uma imagem digital consiste em técnicas para capturar, representar e transformar imagens com o auxílio do computador, com isso, extrair e identificar mais facilmente as informações nelas presentes (PEDRINI; SCHWARTZ, 2008).
    • Etapas (GONZALEZ; WOODS, 2000) :
      • Aquisição;
      • Pré-processamento;
      • Segmentação;
      • Representação e Descrição;
      • Reconhecimento e Interpretação;
  • 12. Etapa de Pré-Processamento de Imagens
    • Corrigir, retocar ou remover imperfeições, ou ainda ajustar as cores de uma imagem, com o objetivo de melhorá-la.
      • Restauração:
        • Métodos para tentar diminuir a degradação ou recuperar por completo uma imagem.
      • Realce:
        • Acentuar as características relevantes de uma imagem.
  • 13. Convolução Espacial
    • Realce de altas, médias ou baixas frequências de variação tonal da imagem, alterando o valor de cada pixel da imagem com base no cálculo da vizinhança de um pixel (BRANCO; ALMEIDA; FILHO, 2005) .
    • O cálculo é realizado através valores pré-estabelecidos, dispostos em uma matriz, denominada máscara :
  • 14. Trabalhos Correlatos
  • 15. Proposta de um Sistema Escalável para Processamento de Vídeo
    • Processamento de Vídeo;
    • Inspirado no trabalho realizado por Flohr (2010);
    • Características:
      • Escalabilidade;
      • Cluster;
      • MPI;
      • Mestre/Escravo;
      • Sistema de Arquivos Distribuídos.
      • Vídeo fracionado temporalmente em GOP ( Group Of Pictures );
  • 16. Arquitetura do Sistema Proposto
  • 17. Servidores de Arquivos Distribuídos (SAD)
    • Função: Armazenamento do vídeo de maneira transparente aos nós conectados a eles.
  • 18. Servidor Auxiliar (SA)
    • Funções:
      • Fracionamento das porções de vídeo;
      • Escalonamento dos GOP aos Nós;
      • União dos GOP processados em uma porção de vídeo.
  • 19. Servidor Auxiliar (SA)
    • Escalonamento:
      • Ferramenta de fracionamento do vídeo:
        • Ffmpeg.
      • Balanceamento de carga adaptativo.
  • 20. Servidor Auxiliar Híbrido (SAH)
    • Um Servidor Auxiliar com processos adicionais:
      • Coordenação das porções do vídeo a cada SA ;
      • União das porções processadas em um único vídeo .
  • 21. Servidor Auxiliar Híbrido (SAH)
    • Coordenação das porções do vídeo a cada SA:
  • 22. Nós
    • Função : Realizar o tratamento de cada imagem dos GOP através de um filtro por convolução espacial .
  • 23. Funcionamento
  • 24. Considerações Finais
    • Esse trabalho descreveu um sistema escalável de alto desempenho pra processamento de vídeo distribuído em forma de GOP, para então, aplicar técnicas de processamento de imagens em cada frame do vídeo separadamente.
    • Dados no formato de vídeo exigem um bom fluxo de comunicação para transmissão e armazenamento dos mesmos, devido ao tamanho dos arquivos  Sistema de Arquivos Distribuídos .
    • Uma vez desenvolvido com eficiência , este trabalho poderá servir como modelo para outros tipos de aplicações que desejam paralelizar o processamento, visando melhorar o desempenho computacional em relação a um sistema sequencial, principalmente na área de processamento de vídeos e imagens .
  • 25. Cronograma
    • 1 - Levantamento de bibliografias;
    • 2 - Analisar e entender a implementação do sistema realizado por (FLOHR, 2010).
    • 3 - Estudar e definir possíveis filtros que serão utilizados no processamento de vídeo.
    • 4 - Modelar sistema.
    • 5 - Escrita do TCC-I.
  • 26. Cronograma
    • 6 - Implementar o sistema.
    • 7 - Realizar testes e análises de desempenho.
    • 8 - Escrita do TCC-II.
    • 9 - Elaborar artigo técnico-científico.
  • 27. Referências
    • BARBOSA, Jorge Manuel Gomes. Paralelismo em Processamento e Analise de Imagens Médicas. Faculdade de Engenharia da Universidade do Porto. Tese de Doutorado. 2000.
    • BRANCO, Fábio Cardinale; ALMEIDA, Teodoro Isnard Ribeiro de; FILHO, Carlos Roberto de Souza. Filtros de convolução proporcionais para realce de imagens. Universidade de São Paulo. SP. 2005.
    • EL-REWINI, H.; ABD-EL-BARR, M. Advanced Computer Architecture And Parallel Processing . [S.l.]: Wiley - Interscience, 2005.
    • FERREIRA, Roberta Ribeiro. Caracterizarão de Desempenho de uma Aplicação Paralela do Método de Elemento Finitos em Ambientes Heterogêneos . Dissertação de Mestrado. Brasília. 2006
  • 28. Referências
    • FLOHR, Eduardo. Sistema de Distribuição de GOP em Cluster. Trabalho de Conclusão de Curso. Universidade do Estado de Santa Catarina – UDESC, Joinville. 2010.
    • GONZALEZ, Rafael C; WOODS, Richard E. Processamento de Imagens Digitais . Edgard Blücher. 2000.
    • GUAN, L.; KUNG, S. Y.; LARSEN, J. Multimedia Image and Video Processing. 3th ed. [S.l.]: CRC Press, 2005.
    • KASSICK, Rodrigo ; BOITO, Francieli ; NAVAUX, Philippe . Impact of I/O Coordination on a NFS-based Parallel File System with Dynamic Reconfiguration. Porto Alegre - RS. 2009.
  • 29. Referências
    • KASSICK, Rodrigo Virote. Reconfiguração Automática de I/O para Aplicações Paralelas no Sistema de Arquivos dNFSp2 . Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul. Porto Alegre. 2010.
    • PEDRINI, Hélio; SCHWARTZ, William Robson. Análise de imagens digitais: princípios, algoritmos e aplicações . Thomson Learning. São Paulo. 2008.
    • SEINSTRA, Frank J. et al. High-Performance Distributed Video Content Analysis with Parallel-Horus . University of Amsterdam. 2007.
    • VIEIRA, C. Distribuição de um a lgoritmo de detecção de formas. Trabalho de Conclusão de Curso - BCC – UDESC. 2008.

×