• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
ISCRAM 2013:  A step towards real-time analysis of major disaster events based on tweets
 

ISCRAM 2013: A step towards real-time analysis of major disaster events based on tweets

on

  • 157 views

Author: André Dittrich

Author: André Dittrich

Statistics

Views

Total Views
157
Views on SlideShare
157
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    ISCRAM 2013:  A step towards real-time analysis of major disaster events based on tweets ISCRAM 2013: A step towards real-time analysis of major disaster events based on tweets Presentation Transcript

    • Geodätisches Institut1 Web Feature Service für DB4GeOKIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT) www.kit.edu A step towards real-time analysis of major disaster events based on tweets M.Sc. André Dittrich May 13, 2013
    • M. Sc. André Dittrich2 Tweet Frequency
    • M. Sc. André Dittrich3
    • M. Sc. André Dittrich4
    • M. Sc. André Dittrich5
    • M. Sc. André Dittrich6
    • M. Sc. André Dittrich7
    • M. Sc. André Dittrich8 Resources & Data  Resources  Twitter  Streaming API → access to 1% of the Firehose  Real-time → up to 60 tweets/sec
    • M. Sc. André Dittrich9 Resources & Data  Resources  Twitter  Streaming API → access to 1% of the Firehose  Real-time → up to 60 tweets/sec  MongoDB  document-oriented Database technology  (binary) JSON (JavaScript Object Model) → tweet ≡ JSON !  Spatial Indexing
    • M. Sc. André Dittrich10 Resources & Data  Resources  Data  Tweet
    • M. Sc. André Dittrich11 Resources & Data  Resources  Data  Tweet  timestamp WHEN?
    • M. Sc. André Dittrich12 Resources & Data  Resources  Data  Tweet  timestamp  GNSS coordinates WHEN? WHERE?
    • M. Sc. André Dittrich13 Resources & Data  Resources  Data  Tweet  timestamp  GNSS coordinates  message text WHEN? WHERE? WHAT?
    • M. Sc. André Dittrich14 Resources & Data  Resources  Data  Tweet  geographical bounding box Longitude [°] Latitude [°] Lower left -86 0 Upper right -67 53
    • M. Sc. André Dittrich15 Resources & Data  Resources  Data  Tweet  geographical bounding box  reference data  several 24 hour records  1 pm to 1 pm EST  approx. 6 GB each
    • M. Sc. André Dittrich16 Resources & Data  Resources  Data  Tweet  geographical bounding box  reference data  several 24 hour records  1 pm to 1 pm EST  approx. 6 GB each  Keyword filtered tweets related to winterstorm Sandy → October 29, 2012 – October 31, 2012 → December 29, 2012 – December 30, 2012
    • M. Sc. André Dittrich17 Data Analysis Number of tweets Time of day [h]
    • M. Sc. André Dittrich18 Data Analysis Number of tweets Time of day [h]
    • M. Sc. André Dittrich19 Data Analysis a0 a1 b1 a2 b2 a3 b3 a4 b4 w RMSE Type 1 3463,6 928,1 -2062,3 998,1 -704,2 353,2 -205,5 30,2 -78,2 0,27 151,1 Type 2 3602,9 781,1 -1887,9 1251,1 239,5 -3,7 0,7 178,2 92,5 0,26 92,8
    • M. Sc. André Dittrich20 Event Data – New Year‘s Eve Number of tweets Time of day [h]
    • M. Sc. André Dittrich21 Keyword Data shelter | winterstorm | weather AND sandy | subway AND flood | sandy AND victims | snowfall | power outages Reference day 12/29/2012 1 pm to 12/30/2012 1 pm
    • M. Sc. André Dittrich22 Keyword Data shelter | winterstorm | weather AND sandy | subway AND flood | sandy AND victims | snowfall | power outages Winterstorm “Sandy“ 10/29/2012 1 pm to 10/30/2012 1 pm Reference day 12/29/2012 1 pm to 12/30/2012 1 pm
    • M. Sc. André Dittrich23 Outlook  Collection of further data → more reliable reference model and robust statistics  Grid-based approach → faster and more accurate localization  Test with different NLP APIs → robust event classification  Exlpoitation of further resources → e.g. Ushahidi
    • M. Sc. André Dittrich24
    • M. Sc. André Dittrich25 Most Stable Time Interval
    • M. Sc. André Dittrich26 Social Event Number of tweets Time of day [h]
    • M. Sc. André Dittrich27 Social Event – Superbowl 2013 Number of tweets Time of day [h]
    • M. Sc. André Dittrich28 Social Event – Superbowl 2013 Number of tweets Time of day [h]
    • M. Sc. André Dittrich29 Social Event – Superbowl 2013 Number of tweets Time of day [h]
    • M. Sc. André Dittrich30 Social Event – Superbowl 2013 Number of tweets Time of day [h]
    • M. Sc. André Dittrich31 Social Event – Superbowl 2013 Number of tweets Time of day [h] Named Entity References [%] Beyoncé 27,51 Destiny‘s Child 10,26 show 4,08 halftime 3,06
    • M. Sc. André Dittrich32 Social Event – Superbowl 2013 Number of tweets Time of day [h]