Your SlideShare is downloading. ×
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Module 3 lesson 12
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Module 3 lesson 12

381

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
381
On Slideshare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Module 3 Lesson 12.notebook 1/24/14 Module 3 Lesson 12 January 28, 2014 Homework: Problem Set 12 #1-3 AIM: Properties of Inequalities Do Now Lesson 11 Exit Ticket 1
  • 2. Module 3 Lesson 12.notebook January 28, 2014 2
  • 3. Module 3 Lesson 12.notebook January 28, 2014 Exit Ticket Solution: 3
  • 4. Module 3 Lesson 12.notebook January 28, 2014 Homework Answers 4
  • 5. Module 3 Lesson 12.notebook January 28, 2014 Homework Answers 5
  • 6. Module 3 Lesson 12.notebook January 28, 2014 Homework Answers 6
  • 7. Module 3 Lesson 12.notebook January 28, 2014 Opening Exercise Sprint 7
  • 8. Module 3 Lesson 12.notebook January 28, 2014 8
  • 9. Module 3 Lesson 12.notebook January 28, 2014 9
  • 10. Module 3 Lesson 12.notebook January 28, 2014 1.) What numbers could you substitute for the variable in this mathematical sentence? x>3 2.) What numbers can not be substituted for x? x > 3 is an INEQUALITY- a mathematical sentence that contains 10
  • 11. Module 3 Lesson 12.notebook January 28, 2014 means the inequality symbol  stays the same means the inequality symbol  switches less than with greater  than and less than or equal to  with greater than or equal to 11
  • 12. Module 3 Lesson 12.notebook January 28, 2014 12
  • 13. Module 3 Lesson 12.notebook January 28, 2014 ­3 4 + ­3 > ­3 + ­3        1 > ­6 > 2 3 ­ 2 > 2 ­ 2      1 > 0 ­3 > ­4 ­3 ­ (­1) > ­4 ­ (­1)          ­2 > ­3 4 3 ­2 > < 5 ­2 + 1 < 5 + 1 ­1 < 6 Preserved Preserved Preserved Preserved 13
  • 14. Module 3 Lesson 12.notebook January 28, 2014 14
  • 15. Module 3 Lesson 12.notebook January 28, 2014 4 > ­3 4(­1) > (­3)(­1)    ­4 < 3 3 > 2 3(­1) > 2(­1)    ­3 < ­2 ­3 > ­4 ­3(­1) > (­4)(­1)        3 < 4 Reversed ­2 < 5 ­2(­1) < 5(­1)        2 > ­5 Reversed Reversed Reversed 15
  • 16. Module 3 Lesson 12.notebook January 28, 2014 16
  • 17. Module 3 Lesson 12.notebook 4 3 > > ­3 2 January 28, 2014 4(2) > (­3)(2)    8 > ­6 3 > 2 2    2 Preserved Preserved    1.5 > 1 ­3 > ­4 ­3 > (­4)        Preserved  ­6 > ­8 ­2 < 5 ­2(3) < 5(3)       ­6 < 15 Preserved 17
  • 18. Module 3 Lesson 12.notebook January 28, 2014 18
  • 19. Module 3 Lesson 12.notebook 4 3 > > ­3 January 28, 2014 4(­3) > (­3)(­3)    ­12 < 9 3 > 2 ­2   ­2 2    ­1.5 < ­1 Reversed Reversed ­3 > (­4) ­3 > ­4 Reversed        6 < 8 ­2 < ­2(   ) < 5(   ) 5        1 > ­2.5 Reversed 19
  • 20. Module 3 Lesson 12.notebook January 28, 2014 Discussion To summarize, when did the inequality symbol  change and when did it stay the same? Preserved Reversed 1.) Add or subtract any number 1.) Multiply or divide by a 2.) Multiply or divide by a negative positive 20
  • 21. Module 3 Lesson 12.notebook 2 + 1 < 5 + 1       3 < 6 January 28, 2014 2(­1) < 5(­1)      ­2 > ­5 ­4 ­ 1 > ­6 ­ 1 ­4 > ­6 ­2    ­2       ­5 > ­7       2 < 3 ­1(6)    2(6)     ­6    12 ­5 < ­4        ­5 + 5 < ­4 + 5       0 < 1 Multiplying by a  negative reverses  the symbol. Dividing by a  negative reverses  the symbol. ­1(­4)    2(­4) Multiplying by a  negative reverses        4    ­8 the symbol. ­5 < ­4 ­1    ­1       5 > 4 Dividing by a  negative reverses  the symbol. 21
  • 22. Module 3 Lesson 12.notebook January 28, 2014 Closing: 1.) What does it mean for an inequality to be preserved? What does it mean for the inequality to be reversed? 2.) When does a greater than become a less than? 22
  • 23. Module 3 Lesson 12.notebook January 28, 2014 23

×