Module 2 lesson 6
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Module 2 lesson 6

on

  • 688 views

 

Statistics

Views

Total Views
688
Views on SlideShare
363
Embed Views
325

Actions

Likes
0
Downloads
0
Comments
0

2 Embeds 325

http://tjersland.blogspot.com 317
http://www.tjersland.blogspot.com 8

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Module 2 lesson 6 Document Transcript

  • 1. Module 2 Lesson 6.notebook November 06, 2013 11/6/13 Module 2, Lesson 6 The Distance between two rational numbers HW: Lesson 6 Problem Set Quiz Friday Do Now: Exit Ticket For Lesson 5 1
  • 2. Module 2 Lesson 6.notebook November 06, 2013 ­2 ­2 +7 = 5 5 + (­9) = ­4 ­2 ­ (­7) = 5 ­8 + (­6) =  ­14 ­14 + 2 = ­12 2
  • 3. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key 3
  • 4. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key 4
  • 5. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key ­2 + 16 18 + (­26) ­14 + (­23)  1 ­ 2 = 1 + (­2) 30 + 45 5
  • 6. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key 6
  • 7. Module 2 Lesson 6.notebook November 06, 2013 7
  • 8. Module 2 Lesson 6.notebook November 06, 2013 Discussion: 1.) In life, at any given moment, will we always be able to use a number line to find the distance between two rational numbers? Is it the most efficient way to calculate distance between two points? 2.) What represents the distance between a number and zero on the number line? 3.) If the distance between 5 and 0 can be calculated using 5 - 0 or 5 , do you think we might be able to calculate the distance between -4 and 5 using absolute value? 8
  • 9. Module 2 Lesson 6.notebook November 06, 2013 8 9
  • 10. Module 2 Lesson 6.notebook November 06, 2013 ­6 ­ (­10) = ­6 + 10 = 4 10
  • 11. Module 2 Lesson 6.notebook November 06, 2013 |­3 ­ 2| = |­3 + (­2)| = |­5| = 5 11
  • 12. Module 2 Lesson 6.notebook November 06, 2013 |­200 ­ 580| = |­200 + (­580)|  = |­780| = 780 780 increase 12
  • 13. Module 2 Lesson 6.notebook November 06, 2013 780 ­780 ft, 780 ft decrease 13
  • 14. Module 2 Lesson 6.notebook ­10 ­9 ­8 ­7 ­6 ­5 November 06, 2013 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6 7 8 9 10 14
  • 15. Module 2 Lesson 6.notebook November 06, 2013 |­7 ­ (­4)| = |­7 + 4| = |­3| = 3 ­10 ­9 ­8 ­7 ­6 ­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6 7 8 9 10 |­18 ­ 15| = |­18 + (­15)| = 33 ­33 140 ­ (­40) =  140 + 40 = ­180 15
  • 16. Module 2 Lesson 6.notebook November 06, 2013 CLOSING: • How can we use a number line to find the distance between two rational numbers? • What does it mean to find the absolute value of a number ? • Is it possible to use absolute value to find distance between a number, p, and another number, =, that isnot zero ? If so how? • Is distance always positive? Is change always positive? 16
  • 17. Module 2 Lesson 6.notebook November 06, 2013 17