Your SlideShare is downloading. ×
Organização e Tratamento de Dados
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Organização e Tratamento de Dados

8,096
views

Published on

Resumo da matéria lecionada em OTD no 7ºano de escolaridade. Trabalho realizado por alunos.

Resumo da matéria lecionada em OTD no 7ºano de escolaridade. Trabalho realizado por alunos.

Published in: Education

0 Comments
6 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
8,096
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
6
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Ano Letivo 2011/2012Organização eTratamento de Dados Patrícia Almeida, 8º1
  • 2. Classificar Dados Qualitativos: quando representam uma qualidade ou Tipos uma característica que não pode ser contada.de dados Discretos: quando o número de valores possíveis é finito. Quantitativos: Contínuos: quando não é possível contar os diferentes valores.
  • 3. Organizar Dados• Constrói-se uma tabela de frequências absolutas (número de vezes que ocorre um determinado acontecimento) e de frequências relativas (quociente entre a frequência absoluta e o total de elementos em estudo, que multiplicando por 100 nos dá a percentagem).saído Frequência Número Frequência numa roleta absoluta relativa 1 10 10 = 0,33 ou 33% 30 2 12 12 = 0,4 ou 40 % 30 3 8 8 = 0,27 ou 27 % 30 Total : 30 1 ou 100 %
  • 4. Organizar Dados• Ainda se pode associar cada um dos acontecimentos a uma parte de um círculo (sector circular); para isso, multiplica-se a frequência relativa, na forma decimal, por 360º. Número saído Frequência Frequência Amplitude numa roleta absoluta relativa do sector 1 10 10 = 0,33 ou 33% 0,33 x 360º 30 = 119º 2 12 12 = 0,4 ou 40 % 0,4 x 360º = 30 114º 3 8 8 = 0,27 ou 27 % 0,27 x 360º 30 = 97º Total : 30 1 ou 100 % 360º
  • 5. Organizar Dados • Quando os dados quantitativos são muitos e variados ou se trata de uma variável contínua, é conveniente agrupá-los em classes. • Por convenção, a cada classe pertence o extremo inferior, o extremo superior pertence à classe seguinte. Tempo gasto de Frequência FrequênciaPor exemplo: casa à escola absoluta relativana classe 10-20, 0-10 12 12 = 0,48 ou 48 % 25estão os números 10-20 8 8 = 0,32 ou 32 %entre 10 e 20, 25incluindo o 10, mas 20-30 5 5 = 0,2 ou 20 %não o 20. 25 Total : 25 1 ou 100 %
  • 6. Percentagens• Uma percentagem é uma razão de consequente 100. Por exemplo: 12% significa 12 ou 0,12. 100• Para criar uma percentagem, multiplica-se a razão por 100. Por exemplo: Se numa turma com 25 alunos há 1 rapariga, a percentagem de raparigas é 4%, porque: 1 x 100 = 0,04 x 100 = 4. 25• Para calcular uma percentagem, por exemplo 15% de 380, faz-se: 15 x 380 = 57. 100
  • 7. Representar Dados• Gráfico de barras: – Deve ter um título e uma legenda em cada um dos eixos; – as barras têm a mesma largura, são separadas pelo mesmo espaço e o seu comprimento é proporcional à frequência que representam.
  • 8. Representar Dados• Histograma: – quando os dados são contínuos as barras do gráfico estão unidas umas às outras. – é formado por rectângulos adjacentes que têm por base a amplitude de cada classe e cuja área é proporcional à frequência absoluta (ou relativa).
  • 9. Representar Dados• Gráfico circular: – cada sector corresponde à frequência de um dado em estudo. 90º 144º 18º 108º
  • 10. Representar Dados• Diagrama de caule-e-folhas: – é um diagrama que utiliza uma parte do valor de cada dado como caule e a outra como folha, para formar grupos ou classes de dados. O diagrama de caule-e-folhas também pode ser usado para comparar duas distribuições.
  • 11. Interpretar Dados• Medidas de localização - Média – Média (ou média aritmética) de um conjunto de dados quantitativos é o valor que se obtém somando todos os dados e dividindo o resultado obtido pelo número de elementos desse conjunto. – Só se pode determinar a média se os dados forem numéricos. Números de irmãos: 0, 1, 1, 3, 2, 2, 0, 2, 2, 0 Média 0+1+1+3+2+2+0+2+2+0 = 13 = 1,3 10 10
  • 12. Interpretar Dados• Medidas de localização - Média – Para se determinar a média de um conjunto de dados organizados numa tabela: -Multiplica-se cada dado pela frequência absoluta correspondente -Adicionam-se esses produtos e divide-se a soma pelo número total de dados. – No caso dos dados estarem agrupados em classes, procede-se do mesmo modo utilizando a marca da classe como representante dos valores de classe.
  • 13. Interpretar Dados• Medidas de localização - Moda – A Moda de um conjunto de dados é o valor ou modalidade com maior frequência (ou que mais vezes aparece). Indica o valor típico. – Um conjunto de dados pode ter uma ou mais modas ou não ter nenhuma. – A moda tanto se pode determinar no caso dos dados serem quantitativos, como qualitativos. – No caso dos dados estarem agrupados em classes, a classes que maior frequência chama-se classe modal.
  • 14. Interpretar Dados• Medidas de localização - Mediana – A Mediana de um conjunto de dados numéricos é o valor que ocupa a posição central; separa o conjunto de dados em duas partes igualmente numerosas. Representa-se abreviadamente por Med. – A mediana, tal como a média, só se pode calcular quando os dados são numéricos. – Para determinar a mediana: • Ordenam-se os dados e divide-se a amostra em duas partes iguais. • Se o número de dados é impar, a mediana é o valor central • Se o número de dados é par, a mediana é a média aritmética dos dois valores centrais.
  • 15. Interpretar Dados• Medidas de localização - Mediana – Com um número ímpar de dados 0, 0, 0, 1, 1, 2, 2, 2 ,2  O número 1 é a mediana da amostra – Com um número par de dados 0, 0, 0, 1, 1, 2, 2, 2 ,2 ,3  A mediana da amostra é a média entre os dois valores centrais 1 e 2. 1 2 1,5 2
  • 16. Interpretar Dados• Medidas de localização - Quartis – Os Quartis são os valores que separam um conjunto de dados numéricos ordenados em quatro partes igualmente numerosas, cada uma delas contendo pelo menos 25% dos dados. – Para determinar os quartis: 1. Ordenar os dados por ordem crescente 2. Determinar a mediana do conjunto de dados. Este é o valor de Q2=Med. 3. Determinar a mediana dos valores que ficam à esquerda de Q2. Este é o valor de Q1. 4. Determinar a mediana dos valores que ficam à direita de Q2. Este é o valor de Q3.
  • 17. Interpretar Dados• Medidas de localização – Quartis 0, 0, 0, 1, 1, 2, 2, 2, 2, 3 Q2 = Me = (1+2):2 = 1,5 0, 0, 0, 1, 1, 2, 2, 2, 2, 3 Q1 = 0 que é o valor central da primeira metade Q3 = 2 que é o valor central da segunda metadeDiagrama de extremos e quartis:
  • 18. Interpretar Dados• Medidas de Dispersão – Amplitude é a diferença entre o valor máximo e o valor mínimo da distribuição. –Amplitude interquartis é a diferença entre o 3º e o 1º quartis. Mede a dispersão dos dados em torno da mediana. –Um diagrama de extremos e quartis é uma forma esquemática de representar os valores extremos (máximo e mínimo) e os quartis de um conjunto de dados. Permite visualizar rapidamente onde se encontra a maior concentração de dados.

×